Электронная нагрузка своими руками. Электронная нагрузка с наворотами

Электронная нагрузка своими руками. Электронная нагрузка с наворотами
Электронная нагрузка своими руками. Электронная нагрузка с наворотами

Расскажу о полезном для радиолюбителей устройстве – о токовой электронной нагрузке с возможностью измерения емкости аккумуляторов. Зачем нужен этот прибор?

Все сталкивались с ситуацией, когда надо выяснить параметры какого-нибудь источника питания, например, лабораторного БП, драйвера светодиодов или зарядноо устройства. Ведь практика показывает, что производители не всегда указывают верные параметры. Конечно, есть самый простой вариант - нагрузить резистором, рассчитанным по закону Ома, и измерить ток с помощью мультиметра. Но для каждого случая надо делать свои расчеты и не всегда можно найти мощный резистор нужного номинала, они довольно дороги. Целесообразнее использовать электронную или активную нагрузку, позволяющую нагрузить любой БП или аккумулятор, и регулировать ток нагрузки обычным потенциометром.

А за счет включения в схему многофункционального цифрового ваттметра, показывающего емкость, этот нагрузочный стенд может разрядить аккумулятор и показать его реальную мощность. Кстати, в отличие от IMAX 6 наша система может разряжать аккумуляторы с током до 40А. Это удобно для автомобильных аккумуляторов.

Схема построена на сдвоенном операционном усилителе (ОУ) LM358, хотя задействован только 1 элемент.

Датчиком тока является мощный резистор R12, желательно на 40Вт, хотя я поставил на 20Вт. Можно соединить параллельно несколько резисторов для получения нужной мощности так, чтобы итоговое сопротивление было равно 0.1 Ом. R10 и R11 (0.22 Ом/ 10Вт) - токовыравнивающие элементы для силовых ключей.У меня реально стоят параллельно 2 х 0.47 Ом / 5Вт для каждого транзистора.

ОУ управляет двумя составными транзисторами КТ827, установленными на отдельные радиаторы. Транзисторы оптимальны для этой схемы, хотя и довольно дорогие.

Принцип работы.

При подключении тестируемого устройства образуется падение напряжения на мощном токовом резисторе R12, соответственно меняется напряжение на входах ОУ, следовательно, и на его выходе. В итоге, сигнал поступающий на транзисторы зависит от падения напряжения на шунте. Изменится ток протекающий по транзисторам.

Потенциометром изменяем напряжение на неинвертирующем входе ОУ и также как описано выше изменяется ток через по транзисторы. Данные транзисторы позволяют работать с токами до 40А, но требуют хорошего охлаждения, т.к. они работают в линейном режиме. Поэтому, кроме массивных радиаторов я поставил вентилятор, с регулировкой оборотов, который можно включить отдельной кнопкой. Схема регулятора оборотов собрана на небольшой плате.

Теоретически максимальное входное напряжение может быть до 100В – транзисторы выдержат, но китайский ваттметр рассчитан только до 60В.

Кнопка S1 изменяет чувствительность ОУ, т.е. переключает на малые токи для точного измерения тестируемых маломощных источников.

Важные особенности данной схемы:

  1. наличие обратной связи для обоих транзисторов,
  2. возможность изменения чувствительности ОУ.
  3. грубая и тонкая регулировка тока (R5 и R6).

Трансформатор в схеме питает только ОУ и блок индикаторов, подойдет любой с током от 400мА и напряжением 15-20В, все равно напряжение потом стабилизируется до 12В линейным стабилизатором 7812. Его нет необходимости ставить на радиатор.

Эта простая схема электронной нагрузки может быть использована для тестирования различных видов блоков питания. Система ведет себя как резистивная нагрузка с возможностью регулирования.

С помощью потенциометра мы можем зафиксировать любую нагрузку от 10мА до 20А, и такое значение будет поддерживаться независимо от падения напряжения. Величина тока непрерывно отображается на встроенном амперметре — поэтому нет необходимости для этой цели использовать сторонний мультиметр.

Схема регулируемой электронной нагрузки

Схема настолько проста, что практически любой желающий может собрать ее, и думаю, она будет незаменима в мастерской каждого радиолюбителя.

Операционный усилитель LM358 делает так, чтобы падение напряжения на R5 было равно значению напряжения заданного с помощью потенциометров R1 и R2. R2 предназначен для грубой подстройки, а R1 для точной.

Резистор R5 и транзистор VT3 (при необходимости и VT4) необходимо подобрать соответствующими максимальной мощности, которой мы хотим нагрузить наш блок питания.

Подбор транзистора

В принципе подойдет любой N-канальный MOSFET транзистор. От его характеристики будет зависеть рабочее напряжение нашей электронной нагрузки. Параметры, которые должны заинтересовать нас — большой I k (ток коллектора) и P tot (рассеиваемая мощность). Ток коллектора — это максимальный ток, который может пустить через себя транзистор, а рассеиваемая мощность — это мощность, которую транзистор может отвести в виде тепла.

В нашем случае транзистор IRF3205 теоретически выдерживает ток до 110А, однако его максимальная мощность рассеивания около 200 Вт. Как нетрудно подсчитать, максимальный ток 20А мы можем задать при напряжении до 10В.

Для того чтобы улучшить эти параметры, в данном случае используем два транзистора, что позволит рассеивать 400 Вт. Плюс ко всему нам будет нужен мощный радиатор с принудительным охлаждением, если мы действительно собираемся выжать максимум.

Для чего нужно такое устройство, как электронная нагрузка, наверное все в курсе - она позволяет создать имитацию очень мощного резистора на выходе блоков питания, зарядок, усилителей, ИБП и других схем при их настройке. Данная электронная нагрузка может выдержать более 100 Ампер тока, рассеивая более 500 Вт непрерывно и выдерживая 1 кВт мощности в импульсном режиме.

Схема в принципе несложная и тут используются два полевых транзистора с регулирующими ОУ. Каждый из двух каналов одинаков и включены они параллельно. Управляющие напряжения связаны между собой и нагрузка делится поровну между двумя мощными полевыми транзисторами. Здесь использованы для шунта 2 резистора на 50 А, формируя напряжение обратной связи 75 мВ. Очевидным преимуществом в выборе такого малого значения сопротивления (каждый шунт сопротивлением всего 1,5 миллиом) в том, что падение напряжения практически ничтожно. Даже при работе с нагрузкой 100 А, падение напряжения на каждом шунтирующем резисторе будет менее 0,1 В.

Недостатком использования такой схемы в том, что требуется ставить ОУ с очень низким входным смещением, так как даже небольшое изменение смещения может привести к большой погрешности в контролируемом токе. Например, при лабораторных испытаниях, всего 100 мкВ напряжения смещения приведет к изменению тока нагрузки на 0,1 А. Кроме того, трудно создать такие стабильные управляющие напряжения без использования ЦАП и прецизионных ОУ. Если вы планируете использовать микроконтроллер для управления нагрузкой, нужно будет либо использовать прецизионные ОУ для усиления напряжения с шунта, совместимые с ЦАП на выходе (например, 0-5 В) или использовать прецизионный делитель напряжения для создания управляющего сигнала.

Вся схема была собрана на куске текстолита методом упрощённого монтажа и размещена на верхней части большого алюминиевого блока. Поверхность металла отполирована для того, чтобы обеспечить хорошую теплопроводность между транзисторами и радиатором. Все соединения с большим током - не менее 5 проводов толстого многожильного провода, тогда они смогут выдерживать не менее 100 А без существенного нагрева или падения напряжения.

Выше приведено фото макетки, на которой впаяны два операционных усилителя повышенной точности LT1636. А модуль DC-DC преобразователя используется для преобразования входного напряжения на стабильных 12 В для контроллера вентилятора системы охлаждения. Вот они - 3 вентилятора на боковой стороне радиатора.

Для начала давайте разберем схему. Я не претендую на оригинальность, так как подсмотрел составные элементы и адаптировал под то, что имелось у меня из деталей.

Цепь защиты составлена из плавкого предохранителя FU1 и диода VD1 (возможно она лишняя). Нагрузка выполнена на четырех 818 транзисторах VT1…VT4. У них приемлемые характеристики по току и рассеиваемой мощности, а также они не дороги и не являются дефицитом. Управление VT5 на 815 транзисторе, а стабилизация на операционном усилителе LM358. Амперметр, показывающих ток, проходящий через нагрузку, я установил отдельно. Т.к. если амперметром заменить резисторы R3 R4 (как в схеме по ссылке выше), то, на мой взгляд, будет теряться часть тока, который потечет через VT5 и показания будут занижены. А судя по тому, как нагревается 815, ток через него протекает приличный. Я даже подумываю, что между эмиттером VT5 и землей надобно поставить еще одно сопротивление Ом так в 50…200.

Отдельно надо рассказать о цепи R10…R13. Так как регулировка происходит не линейно, необходимо брать одно переменное сопротивление в 200…220 кОм с логарифмической шкалой, либо ставить два переменных резистора, которые обеспечивают плавное регулирование во всем диапазоне. При чем R10 (200кОм) регулирует ток от 0 до 2.5А, а R11 (10 кОм) при выкрученном в ноль R10 регулирует ток от 2.5 до 8 А. Верхний предел тока устанавливается резистором R13. При настройке будьте осторожны, если напряжение питания случайно попадет на третью ногу операционного усилителя, 815 открывается полностью, что с большой вероятностью приведет к выходу из строя всех 818 транзисторов.

Теперь немного о блоки питания для нагрузки.

Нет, это не извращение. Просто у меня под рукой не нашлось малогабаритного трансформатора на 12 вольт. Пришлось делать умножитель и повышать напряжение с 6-ти вольт до 12-ти для вентилятора и ставить стабилизатор для питания самой нагрузки и сигнализации.

Да, в это устройство я вставил простенькую сигнализацию по температуре. Схему я подсмотрел . Когда радиатор нагревается выше 90 градусов, включается красный светодиод и пищалка с интегрированным генератором, которая издает очень неприятный звук. Это указывает на то, что пора снижать ток в нагрузке, а то можно лишиться устройства из-за его перегрева.

Казалось бы, при таких мощных транзисторах, которые выдерживают до 80 вольт и 10 А суммарная мощность должна быть не менее 3 кВт. Но, так как мы делаем «кипятильник» и вся мощность источника уходит в тепло, то ограничение накладывается показателем рассеиваемой мощности транзисторов. По даташиту она всего лишь 60 Вт на один транзистор, а с учетом того, что теплопроводность между транзистором и радиатором не идеальна, то фактическая рассеиваемая мощность и того меньше. И поэтому чтобы хоть как-то улучшить теплоотвод я прикрутил транзисторы VT1…VT4 непосредственно к радиатору без прокладок на теплопроводную пасту. При этом мне пришлось организовать специальные накладки на радиатор, чтобы он не замыкал на корпус.

К сожалению, у меня не было возможности протестировать работу устройства во всем диапазоне напряжений, но при 22V 5A нагрузка работает, стабильно не перегреваясь. Но как всегда в бочке меда есть и ложка дегтя. Из-за недостаточной площади радиатора взятого мной, при нагрузке более 130 ватт, через какое-то время (3…5 минут) транзисторы начинают перегреваться. На что указывает сигнализация. Отсюда вывод. Если будете делать нагрузку, берите радиатор как можно большей площади и обеспечите ему надежное принудительное охлаждение.

Также ложкой дегтя можно считать небольшой дрейф в сторону уменьшения тока нагрузки на 100…200 мА. Думаю этот дрейф происходит из-за нагрева резисторов R3, R4. Так, что если есть возможность найти резисторы на 0,15 Ом на 20 Вт или больше, то лучше использовать их.

В целом схема, насколько я понял, не критична к замене деталей. Четыре 818транзистора можно заменить двумя кт896а , кт815г можно, а возможно и нужно, заменить на кт817г. Операционный усилитель думаю тоже можно взять другой.

Хочу особо подчеркнуть, что обязательно при наладке ставьте резистор R13 не менее 10 кОм, потом по мере понимания какой ток вам нужен, уменьшайте это сопротивление. Печатную плату не выкладываю, потому, что монтаж основной части нагрузки сделан навесным.


Дополнение.

Как оказалось, нагрузкой мне приходится пользоваться регулярно и в процессе ее использования пришло понимание того, что по мимо амперметра также нужен вольтметр чтобы контролировать напряжения источника. На Али мне попался небольшой приборчик, который совмещает в себе вольтметр и амперметр. Приборчик 100 V / 10 А мне обошёлся в 150 рублей с пересылкой. Как по мне это копейки т.к. полтарашка пива стоит примерно столько же. Недолго думая я заказал два.


Со временем у меня скопилось определенное количество различных китайских AC-DC преобразователей для зарядки аккумуляторов мобильных телефонов, фонарей, планшетов, а также небольшие импульсные источники питания для электронных и собственно сами акккумуляторы. На корпусах зачастую указываются электрические параметры устройства, но так как чаще всего дело приходится иметь именно с китайскими изделиями, где завысить показатели дело святое, то не лишним было бы проверить реальные параметры устройства, прежде чем использовать его для поделки. Кроме того возможно использование источников питания без корпуса, на которых не всегда имеется информация об их параметрах.


Многие могут сказать, что достаточно использовать мощные переменные или постоянные резисторы, автомобильные лампы или попросту нихромовые спирали. У каждого метода есть свои недостатки и преимущества, но главное - при использование этих методов плавной регулировки тока добиться довольно сложно.

Поэтому я собрал для себе электронную нагрузку на операционном усилители LM358 и составном транзисторе КТ827Б с испытанием источников питания напряжением от 3 В до 35В. В этом устройстве ток через нагрузочный элемент стабилизирован, поэтому он практически не подвержен температурному дрейфу и не зависит от напряжения проверяемого источника, что очень удобно при снятии нагрузочных характеристик и проведении других испытаний, особенно длительных.


Материалы:
- микросхема LM358;
- транзистор КТ827Б (NPN транзистор составной);
- резистор 0,1 Ом 5 Вт;
- резистор 100 Ом;
- резистор 510 Ом;
- резистор 1 кОм;
- резистор 10 кОм;
- переменный резистор 220 кОм;
- конденсатор не полярный 0,1 мкФ;
- 2 шт конденсатор оксидный 4.7 мкФ х 16В;
- конденсатор оксидный 10 мкФ х 50В;
- алюминиевый радиатор;
- стабильный источник питания 9-12 В.

Инструменты:
- паяльник, припой, флюс;
- электродрель;
- лобзик;
- сверла;
- метчик М3.

Инструкция по сборке устройства:

Принцип действия. Устройство по принципу работы является источником тока, который управляется напряжением. Мощный составной биполярный транзистор КТ 827Б с током коллектора Iк= 20А, коэффициентом усиления h21э более 750 и максимальной рассеиваемой мощностью 125 Вт является эквивалентом нагрузки. Резистор R1 мощностью 5Вт - датчик тока. Резистором R5 изменяют ток через резистор R2 либо R3 в зависимости от положения переключателя и соответственно напряжение на нем. На операционном усилители LM358 и транзисторе КТ 827Б собран усилитель с отрицательной обратной связью с эмиттера транзистора на инвертирующий вход операционного усилителя. Действие ООС проявляется в том, что напряжение на выходе ОУ вызывает такой ток через транзистор VT1, чтобы напряжение на резисторе R1 было равно напряжению на резисторе R2 (R3). Поэтому резистором R5 регулируют напряжение на резисторе R2 (R3) и соответственно ток через нагрузку (транзистор VT1). Пока ОУ находится в линейном режиме, указанное значение тока через транзистор VT1 не зависит ни от напряжения на его коллекторе, ни от дрейфа параметров транзистора при его разогреве. Цепь R4C4 подавляет самовозбуждение транзистора и обеспечивает его устойчивую работу в линейном режиме. Для питания устройства необходимо напряжение от 9 В до 12 В, которое обязательно должно быть стабильным, поскольку от него зависит стабильность тока нагрузки. Устройство потребляет не более 10 мА.


Последовательность работ
Электрическая схема простая и не содержит много компонентов, поэтому не стал заморачиваться с печатной платой и произвел монтаж на макетной плате. Резистор R1 поднял над платой, так как он сильно греется. Желательно учитывать расположение радиокомпонентов и не ставить рядом с R1 электролитические конденсаторы. У меня не совсем получилось это сделать (выпустил из виду), что не совсем хорошо.


Мощный составной транзистор КТ 827Б установил на алюминиевый радиатор. При изготовлении теплоотвода его площадь должна быть не менее 100-150 см 2 на 10 Вт рассеиваемой мощности. Я использовал алюминиевый профиль от какого-то фото устройства общей площадью порядка 1000 см 2 . Перед установкой транзистора VT1 зачистил поверхность теплоотвода от краски и нанес теплопроводную пасту КПТ-8 на место установки.


Использовать можно любой другой транзистор серии КТ 827 с любым буквенным обозначением.


Также вместо биполярного транзистора можно в этой схеме использовать полевой n-канальный транзистор IRF3205 или другой аналог этого транзистора, но необходимо изменить номинал резистора R3 на 10 кОм.


Но при этом есть риск теплового пробоя полевого транзистора при быстром изменении проходящего тока от 1А до 10А. Скорее всего корпус ТО-220 не способен передать такое количество тепла за столь малое время и закипает изнутри! Ко всему можно добавить, что еще можно нарваться на подделку радиодетали и тогда параметры транзистора будут совсем непредсказуемы! То ли алюминиевый корпус КТ-9 транзистора КТ827!

Возможно проблему можно решить установив параллельно 1-2 таких же транзисторов, но практически я не проверял - отсутствуют в наличии те самые транзисторы IRF3205 в нужном количестве.

Корпус для электронной нагрузки применил от неисправной автомагнитолы. Ручка для переноса устройства присутствует. Снизу установил резиновые ножки для предотвращения скольжения. В качестве ножек использовал крышечки от пузырьков для медицинских препаратов.


На передней панели для подключения источников питания разместил двухконтактный акустический зажим. Такие используют на аудио колонках.


Также здесь расположена ручка регулятора тока, кнопка включения/выключения питания устройства, переключатель режимов работы электронной нагрузки, ампервольтметр для визуального контроля процесса измерения.


Ампервольтметр заказывал на китайском сайте в виде готового встраиваемого модуля.