Расчет схемы для подключения светодиодов. Расчет сопротивления резистора для светодиодов

Расчет схемы для подключения светодиодов. Расчет сопротивления резистора для светодиодов
Расчет схемы для подключения светодиодов. Расчет сопротивления резистора для светодиодов

При подключении светодиодов небольшой мощности чаще всего используется гасящий резистор. Это наиболее простая схема подключения, которая позволяет получить требуемую яркость без использования дорогостоящих . Однако, при всей ее простоте, для обеспечения оптимального режима работы необходимо провести расчет резистора для светодиода.

Светодиод как нелинейный элемент

Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов:

Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему.

Как видно на рисунке, характеристики имеют нелинейный характер. Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз.

Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

На рисунке показаны типовые значения рабочих точек для красных, зеленых, белых и голубых светодиодов при токе 20 мА. Здесь можно заметить, что led разных цветов при одинаковом токе имеют разное падение напряжения в рабочей области. Эту особенность следует учитывать при проектировании схем.

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду, как показано на картинке справа:

Полная же ВАХ выглядит следующим образом:

Здесь видно, что обратное включение бессмысленно, поскольку светодиод не будет излучать, а при превышении некоторого порога обратного напряжения выйдет из строя в результате пробоя. Излучение же происходит только при включении в прямом направлении, причем интенсивность свечения зависит от тока, проходящего через led. Если этот ток ничем не ограничивать, то led перейдет в область пробоя и перегорит. Если нужно установить рабочий светодиод или нет, то Вам будет полезна статья подробно раскрывающая все способы .

Как подобрать резистор для одиночного светодиода

Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

где U пит — напряжение питания,

U пад- падение напряжения на светодиоде,

I — требуемый ток светодиода.

При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

Расчет резистора при подключении нескольких светодиодов

При последовательном соединении используется один резистор, задающий одинаковый ток всей цепочке led. При этом следует учитывать, что источник питания должен обеспечивать напряжение, превышающее общее падение напряжения на диодах. То есть при соединении 4 светодиодов с падением 2.5 В потребуется источник напряжением более 10 В. Ток при этом для всех будет одинаковым. Сопротивление резистора в этом случае можно рассчитать по формуле:

где — напряжение питания,

— сумма падений напряжения на светодиодах,

— ток потребления.

Так, 4 зеленых светодиода Kingbright L-132XGD напряжением 2.5 В и током 10 мА при питании 12 В потребуют резистора сопротивлением

При этом он должен рассеивать мощность

При параллельном подключении каждому светоизлучающему диоду ток ограничивает свой резистор. В таком случае можно использовать низковольтный источник питания, но ток потребления всей цепи будет складываться из токов, потребляемых каждым светодиодом. Например, 4 желтых светодиода BL-L513UYD фирмы Betlux Electronics с потреблением 20 мА каждый, потребуют от источника ток не менее 80 мА при параллельном включении. Здесь сопротивление и мощность резисторов для каждой пары «резистор – led» рассчитываются так же, как при подключении одиночного светодиода.

Обратите внимание, что и при последовательном, и при параллельном соединении используются источники питания одинаковой мощности. Только в первом случае потребуется источник с большим напряжением, а во втором – с большим током.

Нельзя подключать параллельно несколько светодиодов к одному резистору, т.к. либо они все будут гореть очень тускло, либо один из них может открыться чуть раньше других, и через него пойдет очень большой ток, который выведет его из строя.

Программы для расчета сопротивления

При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным.

Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления. Очень удобным в этом плане является онлайн калькулятор на сайте cxem.net:

Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

Например, с помощью этого калькулятора был рассчитан резистор для трех XLamp MX3 при напряжении питания 12 В:

Также программа обладает очень полезной функцией: она подскажет цветовую маркировку требуемого резистора.

Еще одна простая программа для расчета сопротивления распространенная на просторах интернета разработана Сергеем Войтевичем с портала ledz.org.

Здесь уже вручную выбирается способ подключения светодиодов, напряжение и ток. Программа не требует установки, достаточно распаковать ее в любую директорию.

Заключение

Гасящий резистор – самый простой ограничитель тока для светодиодной цепи. От его подбора зависит ток, а значит, интенсивность свечения и долговечность led. Однако следует помнить, что при больших токах на резисторе будет выделяться значительная мощность, поэтому для питания мощных светодиодов лучше применять драйверы.

Для устойчивой работы светодиоду необходим источник постоянного напряжения и стабилизированный ток, который не будет превышать величины, допустимые спецификой конкретного светодиода. Если необходимо подключить светодиоды индикаторные, рабочий ток которых не превышает 50-100мА, можно ограничить ток посредством резисторов. Если речь идет о питании мощных светодиодов с рабочими токами от сотен миллиампер до единиц ампер, то не обойтись без специальных устройств – драйверов (подробнее об этих устройствах читайте в статье "Драйвера для светодиодов" , готовые модели драйверов можно увидеть .). Далее рассмотрим варианты, когда требуемый ток небольшой и обойтись резисторами все же можно.

Резисторы являются пассивными элементами – ток они просто ограничивают, но никак не стабилизируют. Сила тока будет меняться с изменением напряжения в соответствии с законом Ома. Ограничивается ток резистором банальным преобразованием «лишнего» электричества в тепло по формуле

P = I 2 R , где P - выделяемое тепло в ваттах, I - сила тока в цепи в амперах, R - сопротивление в омах.

Устройство при этом, естественно, греется. Способность резистора рассеивать тепло не безгранична и, при превышении допустимого тока, он сгорит. Допустимая рассеиваемая мощность определяется корпусом резистора. Это нужно учитывать при планировании подключения светодиодов и выбирать элементы с, как минимум, двойным запасом прочности.

Если необходимо подключить один светодиод, то сопротивление резистора можно рассчитать, в соответствии с законом Ома, по простой формуле:

R = (U - U L) / I , где R - требуемое сопротивление в омах, U - напряжение источника питания, U L - падение напряжения на светодиоде в вольтах, I - нужный ток светодиода в амперах.

Очень часто нужно подключить не один, а несколько светодиодов. В этом случае возможно их последовательное или параллельное подключение.

Падение напряжения на последовательно соединенных светодиодах суммируется, через каждый из них протекает одинаковый ток. Напряжение источника питание должно быть больше, чем суммарное падение напряжения.

Рассчитывается сопротивление резистора по такому же принципу, как и в случае одного светодиода, только учитывается падение напряжения не на одном светляке, а суммарно для всей цепочки.

Последовательное подключение удобно тем, что требует минимум дополнительных деталей, кроме того, от источника питания не требуется большой ток. Но при большом количестве светодиодов может потребоваться существенное напряжение. Кроме того, если один из последовательной цепочки сгорит, то цепь оборвется и светить перестанут все светодиоды. Также при таком варианте подключения важно использовать совершенно одинаковые светодиоды, иначе их разные параметры будут служить источником дисбаланса. В итоге они могут либо светить неравномерно, либо значительно быстрее выходить из строя.

Параллельное подключение равносильно одновременному подключению отдельных светодиодов, которым совсем «не обязательно знать» о наличии других светодиодов. При этом напряжение источника питания должно превышать падение напряжения на одном светодиоде. Сила тока каждого светодиода может регулироваться индивидуально, выбором сопротивления подсоединенного к нему резистора. Важно, чтобы источник питания «знал», сколько светодиодов к нему подключено, поскольку общая сила тока, которую потребуется от него предоставить, равна сумме токов, протекающих через все светодиоды. Если один из светодиодов выйдет из строя, со свечением остальных ничего не произойдет, поскольку работают они индивидуально. Учтите, что это не относится к параллельным светодиодам, которые питаются от токоограничивающего драйвера! Драйвер стабилизирует ток, выход из строя одной из веток приведет к общему снижению тока. Это снижение драйвер немедленно компенсирует, что приведет к повышению тока на оставшихся ветках. А они могут это и не пережить. По аналогичной причине следует избегать подключения нескольких параллельных светодиодов через один токоограничивающий резистор.


Сопротивление каждого резистора при параллельном подключении светодиодов рассчитывается, повторюсь, так же, как и при подключении одного светодиода.

Параллельное подключение светодиодов не требует высокого напряжения питания, но при его использовании необходимо обеспечить достаточную силу тока. Требуется большее количество деталей, но можно одновременно подключить светодиоды с разными параметрами. Также большее количество токоограничивающих резисторов, которые будут выделять тепло, даст более низкий общий КПД схемы по сравнению с последовательным подключением.

Сегодня мы начнем с изучения нового элемента, а именно светодиода. Основные сведения о светодиоде собраны в отдельной статье .

Светодиод, в основном, имеет 2 вывода: длинный вывод (анод) соединяется с плюсом питания, более короткий вывод (катод) с минусом. Светодиод, подключенный наоборот не будет светиться, и кроме того, при превышении определенного напряжения может даже сгореть.

С чего следует начать при работе со светодиодом? С просмотра технических параметров на конкретный светодиод! Иногда необходимые нам сведения можно также получить при покупке в магазине. Что же нам нужно знать? То, что мы ищем – это прямой ток (forward current) и прямое напряжение (forward voltage).

Для светодиода главное — это правильно подобранный ток, так как он напрямую влияет на срок службы светодиода. Поэтому мы говорим, что светодиод — это элемент, питаемый током (не напряжением!).

При изучении datasheet для одноцветных светодиодов размером 5мм вот что было обнаружено:

  • красный светодиод: 20 мА / 2,1 В
  • зеленый светодиод: 20 мА / 2,2 В
  • желтый светодиод: 20 мА / 2,2 В
  • оранжевый светодиод: 25 мА / 2,1 В
  • синий светодиодный индикатор: 20 мА / 3,2 В
  • светодиод белый: 25 мА / 3,4 В

(параметры светодиодов могут незначительно отличаться в зависимости от экземпляра и производителя светодиодов)

Нашим источником питания, как и в предыдущих упражнениях, является кассета из 4 батареек, дающие напряжение около 6 вольт. Теперь встает вопрос: как подобрать резистор для ограничения тока красного светодиода, подключенного согласно следующей схеме:

Наша батарея обеспечивает напряжение порядка 6 вольт. Красному светодиоду необходим ток около 20мА. Плюс ко всему нужно учесть падение напряжения на этом светодиоде, т. е. 2,1 вольт:

U R1 = U B1 – U D1

U R1 = 6В – 2,1В

Теперь достаточно подставить наши данные в формулу:

R1 = 3,9В / 20мА

R1 = 3,9В / 0,02А

Таким вот простым способом мы рассчитали сопротивление резистора R1 для красного светодиода, который должен иметь сопротивление минимум 195 Ом. Но вы не сможете найти такого номинала! Что же делать в таком случае? Надо взять из резистор большей величины, но с максимально близким сопротивлением.

Ближайший в номинальном ряду резисторов находится резистор с сопротивлением 200 Ом, и именно такой мы должны использовать в нашей схеме. Почему? Конечно, ничто не мешает нам использовать резистор большего сопротивления, например, 470 Ом, 2,2 кОм… Но как это повлияет на свечение нашего светодиода? Давайте проверим!

На фото этого конечно не заметно, но светодиод светит очень ярко с резистором 200 Ом. Но что случится, если мы заменим резистор на другой, с большим сопротивлением, например, 470 Ом? Светодиод по-прежнему горит. Дальше будем последовательно увеличивать сопротивление: 2,2кОм, 3,9кОм, 4,7кОм… Обратите внимание, что светодиод с увеличением сопротивления резистора светит все слабее и слабее пока, наконец, вообще не перестает светиться.

Еще одно замечание по существу — необходимо использовать резисторы немного больше, чем это следует из расчетов (например, 210 Ом вместо 200 Ом). Почему? Наверно вы обратили внимание, что для расчетов мы взяли номинальное напряжение нашей батареи, в реальности свежие батарейки могут давать более высокое напряжение и поэтому сопротивление резистора может быть недостаточным. Ток на светодиоде будет выше необходимого, что в конечном счете скажется на сроке его службы.

Еще один пример, из жизни (вернее из частых вопросов). Как подобрать резистор для схемы (в автомобиль) , в которой последовательно соединены два красных светодиода (прямой ток 20 мА, прямое напряжение 2,1 В)?

Величину сопротивления резистора R1 рассчитываем аналогично, как в примере выше, с той лишь разницей, что от напряжения бортовой сети автомобиля (14В), необходимо вычесть падение напряжения на обоих диодах D1 и D2:

U R1 = U E1 – U D1 – U D2

U R1 = 14В – 2,1В – 2,1В

Теперь подставим данные в формулу:

R1 = 9,8В / 20мА

R1 = 9,8В / 0,02А

Резистор R1, к которому подключены последовательно два красных светодиода, должен иметь сопротивление минимум 490 Ом. Ближайший в ряду является резистор номиналом 510 Ом. Если у вас нет резистора номиналом 510 Ом, помните, что вы можете соединить последовательно несколько резисторов, например, 5 резисторов по 100 Ом.

А можем ли мы в этой схеме последовательно подключить еще 5 светодиодов? Нет! На каждом из подключенных светодиодов возникает некоторое падение напряжения, другими словами каждый из них потребляет некоторое количество напряжения, например, каждому красному светодиоду нужно 2,1 вольт. Легко подсчитать, что наша батарея не в состоянии обеспечить такое напряжение:

14В < 2,1В + 2,1В + 2,1В + 2,1В + 2,1В+ 2,1В + 2,1В

14В < 14,7В

Приведенный выше пример касается схемы, установленной в автомобиле, где источник напряжения 14В.

Следующий пример будет касаться параллельного соединения светодиодов, так как показано на следующем рисунке:

На этот раз предположим, что светодиод — D1 красный (прямой ток 20 мА, прямое напряжение около 2,1 В), а светодиод D2 имеет белый цвет (прямой ток 25 мА, прямое напряжение 3,4 В).

Из первого закона Кирхгофа мы знаем, что:

I = 20мА + 25мА

Подключая светодиоды параллельно к источнику питания, следует помнить, что каждый светодиод должен иметь свой резистор! Теперь давайте посчитаем падение напряжения на каждом из резисторов:

U R 1 = U B 1 – U D 1

U R1 = 6В – 2,1В

U R 2 = U B 1 – U D 2

U R2 = 6В – 3,4В

Мы знаем, силу тока и напряжение, давайте посчитаем сопротивление:

R1 = U R 1 / I 1

R1 = 3,9В / 20мА

R1 = 3,9В / 0,02А

R2 = 2,6В / 25мА

R2 = 2,6В / 0,025А

Резистор R1 должен иметь сопротивление как минимум 195 Ом (ближайший в номинальном ряду резистор на 200 Ом), а резистор R2 должен иметь сопротивление не менее 104 Ом (ближайший в ряду будет на 120 Ом).

Как лучше соединять светодиоды: последовательно или параллельно? Ответ не простой, потому что оба варианта имеют свои плюсы и минусы:

Вид соединения светодиодов

последовательное

параллельное

для всех светодиодов достаточно одного
резистор
каждый светодиод должен иметь свой собственный резистор
повреждение одного светодиода приводит к
отключению всей цепочки светодиодов
при повреждении одного или несколько светодиодов, остальные светодиоды будут светятся
низкое значение тока ток в цепи увеличивается с каждым последующим светодиодом (ток
каждой ветви суммируется)
требуется более высокое напряжение источника питания
с учетом падения напряжения на
каждый из светодиодов
напряжение питания в схеме может быть
низким

Под конец урока рассмотрим еще один популярный вид – мощные светодиоды. Благодаря им, мы можем получить яркий свет. Мощные светодиоды используются, например, в автомобилях, поэтому следующий пример будет касаться именно проблемы установки мощных светодиодов в автомобиле.

Напряжение в сети автомобиля 14 вольт. Мощный светодиод имеет прямой ток 350 мА и падение напряжения 3,3 вольт. Рассчитаем сопротивление для мощного светодиода так, как мы это делали выше:

U R1 = U E1 – U D1

U R1 = 14В – 3,3В

R1 = U R1 / I
R1 = 10,7В / 350мА
R1 = 31 Ом

Для нашего примера надо подобрать резистор минимум 31 Ом. Проблема в том, что мощный светодиод, как указывает само название, имеет большую мощность и здесь обычный резистор не достаточен. Помимо соответствующего сопротивления наш резистор должен иметь соответствующую номинальную мощность, т. е. допустимую мощность, которая выделяется на резисторе при его работе.

Помните, что основная задача резистора — это сопротивление току. При сопротивлении всегда будет выделяться тепло в той или иной степени. Слишком большая мощность может повредить резистор.
Мощность вычисляем по следующей формуле:

P = 10,7В x 350мА

Номинальная мощность нашего резистора — это минимум 3,7 Вт. В связи с этим, наши стандартные резисторы мощностью 0,25 Вт быстро сгорят. В приведенном выше примере необходимо применить резистор на 5 Вт, но лучшим решением использование нескольких резисторов по 5 Вт, соединенных последовательно или параллельно. Почему? Причина в том, что резисторы плохо отводят тепло (хотя бы из-за их формы), а использование нескольких резисторов сразу увеличит общую площадь поверхности, через которую происходит отдача тепла.

При подборе резистора для мощного светодиода необходимо дополнительно учитывать значительное повышение температуры самого светодиода, что вызывает изменение прямого тока. Поэтому лучше взять резистор большего сопротивления, что обеспечит стабильную работу светодиода при увеличении прямого тока из-за его нагрева во время работы.

Но на практике для питания мощных светодиодов применяют стабилизаторы тока, которые будут обсуждаться в последующих уроках.

Общее правило при подборе резистора (резисторов) для светодиодов является использование чуть большего сопротивления, чем это следует из расчетов. Прямой ток и падение напряжения, протекающие через светодиод лучше измерить мультиметром, чтобы в расчетах учитывать реальные параметры конкретного светодиода.

Вот так светодиод выглядит в жизни:
А так обозначается на схеме:

Для чего служит светодиод?
Светодиоды излучают свет, когда через них проходит электрический ток.

Были изобретены в 70-е года прошлого века для смены электрических лампочек, которые часто перегорали и потребляли много энергии.

Подключение и пайка
Светодиоды должны быть подключены правильным образом, учитывая их полярность + для анода и к для катода Катод имеет короткий вывод, более короткую ножку. Если вы видите внутри светодиода его внутренности - катод имеет электрод большего размера (но это не официальные метод).


Светодиоды могут быть испорчены в результате воздействия тепла при пайке, но риск невелик, если вы паяете быстро. Никаких специальных мер предосторожности применять не надо для пайки большинства светодиодов, однако бывает полезно ухватиться за ножку светодиода пинцетом – для теплоотвода.

Проверка светодиодов
Никогда не подключайте светодиодов непосредственно батарее или источнику питания!
Светодиод перегорит практически моментально, поскольку слишком большой ток сожжет его. Светодиоды должны иметь ограничительный резистор.Для быстрого тестирования 1кОм резистор подходит большинству светодиодов если напряжение 12V или менее. Не забывайте подключать светодиоды правильно, соблюдая полярность!

Цвета светодиодов
Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Многоцветные светодиоды
Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Расчет светодиодного резистора
Светодиод должен иметь резистор последовательно соединенный в его цепи, для ограничения тока, проходящего через светодиод, иначе он сгорит практически мгновенно...
Резистор R определяется по формуле:
R = (V S - V L ) / I

V S = напряжение питания
V L = прямое напряжение, расчётное для каждого типа диодов (как правилоот 2 до 4волт)
I = ток светодиода (например 20мA), это должно быть меньше максимально допустимого для Вашего диода
Если размер сопротивления не получается подобрать точно, тогда возьмите резистор большего номинала. На самом деле вы вряд-ли заметите разницу… совсем яркость свечения уменьшится совсем незначительно.
Например: Если напряжение питания V S = 9 В, и есть красный светодиод (V = 2V), требующие I = 20мA = 0.020A,
R = (- 9 В) / 0.02A = 350 Ом. При этом можно выбрать 390 Ом (ближайшее стандартное значение, которые больше).

Вычисление светодиодного резистора с использованием Закон Ома
Закон Ома гласит, что сопротивление резистора R = V / I, где:
V = напряжение через резистор (V = S - V L в данном случае)
I = ток через резистор
Итак R = (V S - V L ) / I

Последовательное подключение светодиодов.
Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды.
Все светодиоды, которые соединены последовательно, долдны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.


Пример расчета:
Красный, желтый и зеленый диоды - при последовательном соединении необходимо напряжение питания - не менее 8V, так 9-вольтовая батарея будет практически идеальным источником.
V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются).
Если напряжение питания V S 9 В и ток диода = 0.015A,
Резистором R = (V S - V L ) / I = (9 - 6) /0,015 = 200 Ом
Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

Избегайте подключения светодиодов в параллели!
Подключение несколько светодиодов в параллели с помощью одного резистора не очень хорошая идея…


Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый.., что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Мигающие светодиоды
Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек.

Цифробуквенные светодиодные индикаторы
Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны:)

Светоизлучающие диоды, характеризуются рядом эксплуатационных параметров:

  • Номинальный (рабочий) ток – I н;
  • падение напряжения при номинальном токе – U н;
  • максимальная рассеиваемая мощность – P max ;
  • максимально допустимое обратное напряжение – U обр.

Самым важным из перечисленных параметров является рабочий ток .

При протекании через светодиод номинального рабочего тока – номинальный световой поток, рабочее напряжение и номинальная рассеиваемая мощность устанавливаются автоматически. Для того чтобы задать рабочий режим LED, достаточно задать номинальный ток светодиода.

В теории светодиоды нужно подключать к источникам постоянного тока. Однако, на практике, LED подключают к источникам постоянного напряжения: батарейки, трансформаторы с выпрямителями или электронные преобразователи напряжения (драйверы).

Для задания рабочего режима светодиода, применяют простейшее решение – последовательно с LED включают токоограничивающий резистор. Их еще называют гасящими или балластными сопротивлениями.

Рассмотрим, как выполняется расчет сопротивления резистора для светодиода.

Расчет резистора светодиода (по формулам)

При расчете вычисляют две величины:

  • Сопротивление (номинал) резистора;
  • рассеиваемую им мощность P.

Источники напряжения, питающие LED, имеют разное выходное напряжение. Для того чтобы выполнить подбор резистора для светодиода нужно знать напряжение источника (U ист), рабочее падение напряжения на диоде и его номинальный ток. Формула для расчета выглядит следующим образом:

R = (U ист — U н) / I н

При вычитании из напряжения источника номинальное падение напряжения на светодиоде – мы получаем падение напряжения на резисторе. Разделив получившееся значение на ток мы, по закону Ома, получаем номинал токоограничивающего резистора. Подставляем напряжение, выраженное в вольтах, ток – в амперах и получаем номинал, выраженный в омах.

Электрическую мощность, рассеиваемую на гасящем сопротивлении, вычисляют по следующей формуле:

P = (I н) 2 ⋅ R

Исходя из полученного значения, выбирается мощность балластного резистора. Для надежной работы устройства она должна быть выше расчетного значения. Разберем пример расчета.

Пример расчета резистора для светодиода 12 В

Рассчитаем сопротивление для LED, питающегося от источника постоянного напряжения 12В.

Допустим в нашем распоряжении имеется популярный сверхяркий SMD 2835 (2.8мм x 3.5мм) с рабочим током 150мА и падением напряжения 3,2В. SMD 2835 имеет электрическую мощность 0,5 ватта. Подставим исходные значения в формулу.

R = (12 — 3,2) / 0,15 ≈ 60

Получаем, что подойдет гасящий резистор сопротивлением 60 Ом. Ближайшее значение из стандартного ряда Е24 – 62 ома. Таким образом, для выбранного нами светодиода можно применить балласт сопротивлением 62Ом.

Теперь вычислим рассеиваемую мощность на сопротивлении.

P = (0,15) 2 ⋅ 62 ≈ 1,4

На выбранном нами сопротивлении будет рассеиваться почти полтора ватта электрической мощности. Значит, для наших целей можно применить резистор с максимально допустимой рассеиваемой мощностью 2Вт.

Осталось купить резистор с подходящим номиналом. Если же у вас есть старые платы, с которх можно выпаять детали, то по цветовой маркировке можно выполнить подбор резистора. Воспользуйтесь формой ниже.

На заметку! В приведенном выше примере на токоограничительном сопротивлении рассеивается почти в три раза больше энергии, чем на светодиоде. Это означает, что с учетом световой отдачи LED, КПД нашей конструкции меньше 25%.

Чтобы снизить потери энергии лучше применить источник с более низким напряжением. Например, для питания можно применить преобразователь постоянного напряжения AC/AC 12/5 вольт. Даже с учетом КПД преобразователя потери будут значительно меньше.

Параллельное соединение

Довольно часто требуется подключить несколько диодов к одному источнику. Теоретически, для питания нескольких параллельно соединенных LED, можно применить один токоограничивающий резистор. При этом формулы будут иметь следующий вид:

R = (U ист — U н) / (n ⋅ I н)

P = (n ⋅ I н) 2 ⋅ R

Где n – количество параллельно включенных ЛЕДов.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Даже в «китайских» изделиях производители для каждого светодиода устанавливают отдельный токоограничивающий резистор. Дело в том, что в случае общего балласта для нескольких LED многократно возрастает вероятность выхода из строя светоизлучающих диодов.

В случае обрыва одного из полупроводников, его ток перераспределится через оставшиеся LED. Рассеиваемая на них мощность увеличится и они начнут интенсивно нагреваться. Вследствие перегрева следующий диод выйдет из строя и дальше процесс примет лавинообразный характер.

Совет. Если по какой-то причине нужно обойтись одним гасящим сопротивлением, увеличьте его номинал на 20-25%. Это обеспечит большую надежность конструкции.


Можно ли обойтись без резисторов?

Действительно, в некоторых случаях можно не использовать токоограничивающий резистор. Рассмотренный нами светодиод можно напрямую запитать от двух батареек 1,5В. Так как его рабочее напряжение составляет 3,2В, то протекающий через него ток будет меньше номинального и балласт ему не потребуется. Конечно, при таком питании светодиод не будет выдавать полный световой поток.

Иногда в цепях переменного тока в качестве токоограничивающих элементов вместо резисторов применяют конденсаторы (подробнее про ). В качестве примера можно привести выключатели с подсветкой, в которых конденсаторы являются «безваттными» сопротивлениями.