Курсовая работа: Расчет естественного освещения. Защита от шума и вибраций Расчет естественной освещенности помещения пример расчета

Курсовая работа: Расчет естественного освещения. Защита от шума и вибраций Расчет естественной освещенности помещения пример расчета
Курсовая работа: Расчет естественного освещения. Защита от шума и вибраций Расчет естественной освещенности помещения пример расчета

Размеры комнаты под названием “золотой кубоид” рекомендованы AES (Audio Engineering Sosiety): 10" х 16" х 26" = H x B x L = 3,05м x 4,9м х 7,93м. Такие пропорции основаны на так называемых числах Фибоначчи, в частности на “золотом сечении”, когда отношение одного размера к другому имеет числовое значение, близкое к 0,618034: Для лаборатории SAS размеры H x B x L = 2,56м х 3,05м х 5,25м (указаны в скобках) гармонизированы по другим значениям чисел Фибоначчи:

Для примера приведена таблица иррациональных отношений, основанных на аддитивном ряде чисел Фибоначчи, посредством которых можно гармонизировать не только комнаты прослушивания, но и любые изделия и конструкции. В частности посредством таблицы этих чисел гармонизированы все элементы усилителя “Maestro Grosso”. Успешная реализация концепции дизайна в сложной пространственной композиции была бы невозможна без таблицы чисел Фибоначчи (табл. 6.1).

Таблица. 6.1. Числа Фибоначчи.

Вернемся к комнате прослушивания с пропорциями по AES. Джордж Кардас предложил способ определения положения АС и слушателя, основанный также на числах фибоначчи (размечено черным цветом на рис. 6.21). Для лаборатории SAS голубым цветом показано расположение АС и слушателя, если руководствоваться способом Кардаса. Красным цветом показано фактическое, оптимизированное по слуху расположение АС и слушателя. Если проанализировать табл. 6.2, где приведены расчеты fn по (6.1), то видно неслучайность выбора по слуху расположения АС и слушателя.

Таблица 6.2.

для "SAS"
по Cardas

для "SAS"
по слуху

примечания

АС - слушатель
АС - стена

слушатель -
задняя стена

Для того, чтобы не попадать в пучности звуковых волн в помещении, требуется выбирать такие значения относительныхрасстояний между АС, слушателем и АС. стенами и АС, слушателем и стеной, чтобы эти расстояния были близки к /З относительно главных мод (частот) звуковых волн, определяемых по (6.1) и представленных в табл. 6.2.

Расстояния от АС до боковых стен:


0,276 x B=0,276 x 3,05 = 0.84м;
2. Фактическое по слуху для SAS-Lab:
0.85м = Н/3= 2,56/3.

Расстояние между АС:

1. Расчет по Кардасу для SAS-LаЬ:
В - 2 x 0,276 x В = 3,05 - 2 x 0,276 x 3.05 = 1,37м;

1,35м; (1,35/Н = 0,527, ближайшее число Фибоначчи 0,528).

Расстояние от слушателя до АС:

1.Расчет по Кардасу для SAS-LаЬ:
L -2 x 0,618 x Н = -5,25 - 2 x 0,618 x 2,56 = 2,09м;
2. Фактическое по слуху для SAS-LаЬ:
2,1м (2,1/Н = 0,82; ближайшее число Фибоначчи 0,854).

Расстояние от слушателя до задний стены:

1. Расчет по Кардасу для SAS-LаЬ:
0.618 x Н = 0,618 x 2,56 = 1,58 м:
2. фактическое по слуху для SAS-LаЬ:
1,25м (1.25/Н = 0,488; ближайшее число Фибоначчи 0,472).

Позади слушателя сложено наибольшее количество стройматериалов, что значительно увеличивает звукопоглощение в этой части лаборатории, что, видимо, привело к смещению оптимальной зоны для слушателя.

Расстояние от АС до стены:

1 Расчет по Кардасу для SAS-LаЬ:
0,618 x H = 0,618 x 2.56 = 1,58м:
2. Фактическое по слуху для SAS-LаЬ:
1.9м (1.9/Н = 0,742; ближайшее число Фибоначчи 0,73).

Как видно, слуховой контроль дает оптимальное расположение АС и слушателя, когда знаешь, что и как контролировать. Числа Фибоначчи вполне адекватно показывают точность слухового аппарата для оптимизации зоны прослушивания в лаборатории SAS. Читатели, опираясь на изложенный материал, смогут проверить его применимость в своих комнатах прослушивания.


Оптимизация расположения громкоговорителей в комнате прямоугольной формы

Для достижения высокого качества звуковоспроизведения, акустические характеристики комнаты для прослушивания необходимо приблизить к определенным оптимальн м значениям. Это достигается формированием "акустически правильной" геометрии помещения, а также с помощью специальной акустической отделки внутренних поверхностей стен и потолка.

Но очень часто приходится иметь дело с комнатой, форму которой изменить уже невозможно. При этом собственные резонансы помещения могут крайне негативно повлиять на качество звучания аппаратуры. Вважным инструментом для снижения влияния комнатных резонансов является оптимизация взаимного расположения акустических систем относительно друг друга, ограждающих конструкций и зоны прослушивания.

Предлагаемые калькуляторы предназначены для расчетов в прямоугольных симметричных помещениях с низким фондом звукопоглощения.


Применение на практике результатов данных расчетов позволит уменьшить влияние комнатных мод, улучшить тональный баланс и выровнять АЧХ системы "АС-комната" на низких частотах.
Необходимо отметить, что результаты расчетов не обязательно приводят к созданию "идеальной" звуковой сцены, они касаются только коррекции акустических дефектов, вызванных, прежде всего, влиянием нежелательных комнатных резонансов.
Но результаты расчетов могут стать хорошей отправной точкой для дальнейшего поиска оптимального месторасположения АС с точки зрения индивидуальных предпочтений слушателя.

Определение площадок первых отражений


Слушатель, находящийся в комнате для прослушивания музыки, воспринимает не только прямой звук, излучаемый акустическими системами, но и отражения от стен, пола и потолка. Интенсивные отражения от некоторых участков внутренних поверхностей комнаты (площадок первых отражений) взаимодействуют с прямым звуком АС, что приводит к изменению частотной характеристики звука, воспринимаемого слушателем. При этом на некоторых частотах происходит усиление звука, а некоторых его значительное ослабление. Этот акустический дефект, называемый "гребенчатой фильтрацией", приводит к нежелательному "окрашиванию" звука.

Управление интенсивностью ранних отражений позволяет улучшить качество звуковой сцены, сделать звучание АС более ясным и детальн м. Наиболее важны ранние отражения от площадок, расположенных на боковых стенах и потолке между зоной прослушивания и АС. Кроме того, большое влияние на качество звука могут оказать отражения от тыловой стены, если зона прослушивания расположена к ней слишком близко.

На участках расположения площадок ранних отражений рекомендуется размещать звукопоглощающие материалы или звукорассеивающие конструкции (акустические диффузоры). Акустическая отделка площадок ранних отражений должна быть адекватна частотному диапазону, в котором более всего наблюдаются акустические искажения (эффект гребенчатой фильтрации).

Линейные размеры применяемых акустических покрытий должны быть на 500-600 мм больше размеров площадок первых отражений. Параметры необходимой акустической отделки в каждом конкретном случае рекомендуется согласовать с инженером-акустиком.

"

Расчет
резонатора Гельмгольца

Резонатор Гельмгольца является колебательной системой с одной степенью свободы, поэтому он обладает способностью отзываться на одну определенную частоту, соответствующую его собственной частоте.

Характерной особенностью резонатора Гельмгольца является его способность совершать низкочастотные собственные колебания, длина волны которых значительно больше размеров самого резонатора.

Это свойство резонатора Гельмгольца используется в архитектурной акустике при создании так называемых щелевых резонансных звукопоглотителей (Slot Resonator). В зависимости от конструкции резонаторы Гельмгольца хорошо поглощают звук на средних и низких частотах.

В общем случае конструкция поглотителя представляет собой деревянный каркас, смонтированный на поверхности стены или потолка. На каркасе закрепляется набор деревянных планок, между которыми оставляются зазоры. Внутреннее пространство каркаса заполняется звукопоглощающим материалом. Резонансная частота поглощения зависит от сечения деревянных планок, глубины каркаса и эффективности звукопоглощения изоляционного материала.

fo = (c/(2*PI))*sqrt(r/((d*1.2*D)*(r+w))) , где

w - ширина деревянной планки,

r - ширина зазора,

d - толщина деревянной планки,

D - глубина каркаса,

с - скорость звука в воздухе.

Если в одной конструкции применять планки различной ширины и закреплять их с неодинаков ми зазорами, а также выполнять каркас с переменной глубиной, можно построить поглотитель, эффективно работающий в широкой полосе частот.

Конструкция резонатора Гельмгольца достаточно проста и может быть собрана из недорогих и доступных материалов непосредственно в музыкальной комнате или в студийном помещении во время производства строительных работ.

"

Расчет панельного НЧ-поглотителя конверсионного типа (НЧКП)

Панельный поглотитель конверсионного типа является достаточно популярным средством акустической обработки музыкальных комнат благодаря простой конструкции и довольно высокой эффективности поглощения в области низких частот. Панельный поглотитель представляет собой жесткий каркас-резонатор с замкнутым объемом воздуха, герметично закрытый гибкой и массивной панелью (мембраной). В качестве материала мембраны, обычно применяют листы фанеры или MDF. Во внутреннее пространство каркаса помещается эффективный звукопоглощающий материал.

Звуковые колебания приводят в движение мембрану (панель) и присоединенный объем воздуха. При этом кинетическая энергия мембраны преобразуется в тепловую энергию за счет внутренних потерь в материале мембраны, а кинетическая энергия молекул воздуха преобразуется в тепловую энергию за счет вязкого трения в слое звукопоглотителя. Поэтому мы называем такой тип поглотителя конверсионным.

Поглотитель представляет собой систему масса-пружина, поэтому он обладает резонансной частотой, на которой его работа наиболее эффективна. Поглотитель может быть настроен на желаемый диапазон частот путем изменения его формы, объема и параметров мембраны. Точн й расчет резонансной частоты панельного поглотителя является сложной математической задачей, и результат зависит от большого количества исходных параметров: способа закрепления мембраны, её геометрических размеров, конструкции корпуса, характеристик звукопоглотителя и т.п.

Тем не менее, использование некоторых допущений и упрощений позволяет достичь приемлемого практического результата.

В таком случае, резонансную частоту fo можно описать следующей оценочной формулой:

fo=600/sqrt(m*d) , где

m - поверхностная плотность мембраны, кг/кв.м

d - глубина каркаса, см

Данная формула справедлива для случая, когда внутреннее пространство поглотителя заполнено воздухом. Если внутрь поместить пористый звукопоглощающий материал, то на частотах ниже 500 Гц процессы в системе перестают быть адиабатическими и формула трансформируется в другое соотношение, которое и применяется в он-лайн калькуляторе "Расчет панельного поглотителя":

fo=500/sqrt(m*d)

Заполнение внутреннего объема конструкции пористным звукопоглощающим материалом снижает добротность (Q) поглотителя, что приводит к расширению его рабочего диапазона и увеличению эффективности поглощения на НЧ. Слой звукопоглотителя не должен прикасаться к внутренней поверхности мембраны, также желательно оставить воздушный зазор между звукопоглотителем и задней стенкой устройства.
Теоретический рабочий диапазон частот панельного поглотителя расположен в пределах +/- одна октава относительно расчетной резонансной частоты.

Необходимо отметить, что в большинстве случаев описанного упрощенного подхода вполне достаточно. Но иногда решение ответственной акустической задачи требует более точного определения резонансных характеристик панельного поглотителя с учетом сложного механизма изгибных деформаций мембраны. Это требует проведения более точных и достаточно громоздких акустических расчетов.

"

Расчет размеров студийных помещений в соответствии с рекомендациями EBU/ITU, 1998

За основу взята методика, разработанная в 1993 году Робертом Волкером (Robert Walker) после серии исследований, проведенных в инженерном департаменте ВВС (Research Department Engineering Division of ВВС). В результате была предложена формула, регулирующая соотношение линейных размеров помещения в достаточно широких пределах.

В 1998 году данная формула была принята в качестве стандарта Европейским Радиовещательн м Союзом (European Broadcasting Union, Technical Recommendation R22-1998) и Международным Телекоммуникационным Союзом (International Telecommunication Union Recommendation ITU-R BS.1116-1, 1998) и рекомендована к применению при строительстве студийных помещений и музыкальных комнат прослушивания.
Соотношение выглядит следующим образом:

1.1w/h <= l/h <= 4.5w/h - 4,

l/h < 3, w/h < 3

где l - длина, w - ширина, и h - высота помещения.

Кроме того, должны быть исключены целочисленные соотношения длинны и ширины помещения к его высоте в пределах +/- 5%.

Все размеры должны соответствовать расстояниям между основными ограждающими конструкциями помещения.

"

Расчет диффузора Шредера

Проведение расчетов в предлагаемом калькуляторе подразумевает ввод данных в диалоговом режиме и дальнейшее выведение результатов на экран в виде диаграммы. Расчет времени реверберации производится по методике, изложенной в СНиП 23-03-2003 "Защита от шума" в октавных полосах частот по формуле Эйринга (Carl F. Eyring):

Т (сек) = 0,163*V / (−ln(1−α)*S + 4*µ*V)

V - объем зала, м3
S - суммарная площадь всех ограждающих поверхностей зала, м2
α - средний коэффициент звукопоглощения в помещении
µ - коэффициент, учитывающий поглощение звука в воздухе

Полученное расчетное время реверберации графически сравнивается с рекомендуемым (оптимальным) значением. Оптимальным называют такое время реверберации, при котором звучание музыкального материала в данном помещении будет наилучшим или при котором разборчивость речи будет наивысшей.

Оптимальные значения времени реверберации нормируются соответствующими международными стандартами:

DIN 18041 Acoustical quality in small to medium-sized rooms, 2004
EBU Tech. 3276 - Listening conditions for sound programme, 2004
IEC 60268-13 (2nd edition) Sound system equipment - Part 13, 1998

ГОУ ВПО «Сургутский Государственный Университет»

Ханты-Мансийского Автономного Округа – Югры

Кафедра Безопасности Жизнедеятельности

Курсовая работа

Тема: «Расчет естественного освещения»

Выполнил: студент 04-42 группы 5 курса

Химико-технологического факультета

СеменоваЮлияОлеговна

Преподаватель:

К.х.н., доцент

АндрееваТатьянаСергеевна

Курсовая работа содержит: 15 рисунков, 9 таблиц, 2 использованных источника(в том числе СП 23-102-2003 и СНиП 23-05-95), расчетные формулы, расчеты, план и разрез помещения(лист 1, лист 2, формат А 3).

Цель работы: определение площади световых проемов, то есть количества и геометрических размеров окон, обеспечивающих нормированное значение КЕО.

Объект исследования: рабочий кабинет.

Объем работы: 41 страница.

Результат работы: выбранные размеры светового проема обеспечивают требования норм по совмещенному освещению рабочего кабинета.

Введение 4

Глава 1. Виды естественного освещения 5

Глава 2. Принцип нормирования естественного освещения 6

Глава 3. Проектирование естественного освещения 9

Глава 4. Расчет естественного освещения

4.1. Выбор значений коэффициента естественного освещения 12

4.2. Предварительный расчет площади световых проемов и КЕО при боковом освещении 13

4.3. Проверочный расчет КЕО при боковом освещении 16

4.4. Предварительный расчет площади световых проемов и КЕО при верхнем освещении 19

4.5. Проверочный расчет КЕО при верхнем освещении 23

Глава 5. Расчет естественного освещения рабочего кабинета 29

Таблицы 32

Заключение 39

Список использованной литературы 40


Введение

Помещения с постоянным пребыванием людей должны иметь естественное освещение.

Естественное освещение - освещение помещений пря­мым или отраженным светом, проникающим че­рез световые проемы в наружных ограждающих конструкциях. Естественное освещение должно предусматриваться, как правило, в помещениях с постоянным пребыванием людей. Без естествен­ного освещения допускается проектировать от­дельные виды производственных помещений сог­ласно Санитарным нормам проектирования про­мышленных предприятий.

Виды естественного освещения

Различают следующие виды естественного освещения помещений:

·боковое одностороннее - когда световые проемы расположены в одной из наружных стен помещения,

Рисунок 1 - Боковое одностороннее естественное освещение

·боковое - световые проемы в двух противо­положных наружных стенах помещения,

Рисунок 2 - Боковое естественное освещение

·верхнее - когда фонари и световые проемы в покрытии, а также световые проемы в стенах перепада высот здания,

·комбинированное - световые проемы, предус­мотренные для бокового (верхнее и боковое) и верхнего освещения.

Принцип нормирования естественного освещения

Естественное освещение используется для общего освещения производственных и подсобных помещений. Оно создается лучистой энергией солнца и на организм человека действует наиболее бла­гоприятно. Используя этот вид освещения, следует учитывать ме­теорологические условия и их изменения в течение суток и перио­дов года в данной местности. Это необходимо для того, чтобы знать, какое количество естественного света будет попадать в поме­щение через устраиваемые световые проемы здания: окна - при боковом освещении, световые фонари верхних перекрытий здания - при верхнем освещении. При комбинированном естественном осве­щении к верхнему освещению добавляется боковое.

Помещения с постоянным пребыванием людей должны иметь естественное освещение. Установленные расчетом размеры световых проемов допускается изменять на +5, -10%.

Неравномерность естественного освещения помещений производственных и общественных зданий с верхним или верхним и естественным боковым освещением и основных помещений для детей и подростков при боковом освещении не должна превышать 3:1.

Солнцезащитные устройства в общественных и жилых зданиях следует предусматривать в соответствии с главами СНиП по проектированию этих зданий, а также с главами по строительной теплотехнике.

Качество освещения естественным светом характеризуется коэф­фициентом естественной освещенности к ео, который представляет собой отношение освещенности на горизонтальной поверхности внутри помещения к одновременной горизонтальной освещенности снаружи,

,

где Е в - горизонтальная освещенность внутри помещения в лк;

Е н - горизонтальная освещенность снаружи в лк.

При боковом освещении нормируется минимальное значение коэффициента естественной освещенности - к ео мин, а при верхнем и комбинированном освещении - среднее его значение - к ео ср. Способ расчета коэффициента естественной освещенности приведен в Санитарных нормах проектирования промышленных предприя­тий.

С целью создания наиболее благоприятных условий труда уста­новлены нормы естественной освещенности. В тех случаях когда естественная освещенность недостаточна, рабочие поверхности должны дополнительно освещаться искусственным светом. Смешан­ное освещение допускается при условии дополнительного освещения только рабочих поверхностей при общем естественном освещении.

Строительными нормами и правилами (СНиП 23-05-95) коэф­фициенты естественной освещенности производственных помещений установлены в зависимости от характера работы по степени точ­ности.

Для поддержания необходимой освещенности помещений норма­ми предусматривается обязательная очистка окон и световых фона­рей от 3 раз в год до 4 раз в месяц. Кроме того, следует система­тически очищать стены, оборудование и окрашивать их в светлые цвета.

Нормы естественного освещения промышленных зданий, сведенные к нормированию К.Е.О., представлены в СНиП 23-05-95. Для облегчения нормирования освещенности рабочих мест все зрительные работы по степени точности делятся на восемь раз­рядов.

СНиП 23-05-95 устанавливают требуемую величину К.Е.О. в зависимости от точности работ, вида освещения и географиче­ского расположения производства. Территория России делится на пять световых поясов, для ко­торых значения К.Е.О. определяются по формуле:

где N – номер группы административно-территориального района по обеспеченности естественным светом;

Значение коэффициента естественной освещенности, выбираемое по СНиП 23-05-95 в зависимости от характеристики зрительных работ в данном помещении и системы естественного освещения.

Коэффициент светового климата, который находится по таблицам СНиП в зависимости от вида световых проемов, их ориентации по сторонам горизонта и номера группы административного района.

Для определения соответствия естественной освещенности в производственном помещении требуемым нормам освещенность измеряют при верхнем и комбинированном освещении-в раз­личных точках помещения с последующим усреднением; при бо­ковом- на наименее освещенных рабочих местах. Одновремен­но измеряют наружную освещенность и определенный расчет­ным путем К.Е.О. сравнивают с нормативным.

Проектирование естественного освещения

1.Проектирование естественного освещения зданий должно базироваться на изучении трудовых процессов, выполняемых в помещениях, а также на светоклиматических особенностях места строительства зданий. При этом должны быть определены следующие параметры:

характеристика и разряд зрительных работ;

группа административного района, в котором предполагается строительство здания;

нормированное значение КЕО с учетом характера зрительных работ и светоклиматических особенностей места расположения зданий;

требуемая равномерность естественного освещения;

продолжительность использования естественного освещения в течение суток для различных месяцев года с учетом назначения помещения, режима работы и светового климата местности;

необходимость защиты помещения от слепящего действия солнечного света.

2. Проектирование естественного освещения здания следует выполнять в следующей последовательности:

определение требований к естественному освещению помещений;

выбор систем освещения;

выбор типов световых проемов и светопропускающих материалов;

выбор средств для ограничения слепящего действия прямого солнечного света;

учет ориентации здания и световых проемов по сторонам горизонта;

выполнение предварительного расчета естественного освещения помещений (определение необходимой площади световых проемов);

уточнение параметров световых проемов и помещений;

выполнение проверочного расчета естественного освещения помещений;

определение помещений, зон и участков, имеющих недостаточное по нормам естественное освещение;

определение требований к дополнительному искусственному освещению помещений, зон и участков с недостаточным естественным освещением;

определение требований к эксплуатации световых проемов;

внесение необходимых корректив в проект естественного освещения и повторный проверочный расчет (при необходимости).

3. Систему естественного освещения здания (боковое, верхнее или комбинированное) следует выбирать с учетом следующих факторов:

назначения и принятого архитектурно-планировочного, объемно-пространственного и конструктивного решения здания;

требований к естественному освещению помещений, вытекающих из особенностей технологии производства и зрительной работы;

климатических и светоклиматических особенностей места строительства;

экономичности естественного освещения (по энергетическим затратам).

4. Верхнее и комбинированное естественное освещение следует применять преимущественно в одноэтажных общественных зданиях большой площади (крытые рынки, стадионы, выставочные павильоны и т. п.).

5. Боковое естественное освещение следует применять в многоэтажных общественных и жилых зданиях, одноэтажных жилых зданиях, а также в одноэтажных общественных зданиях, в которых отношение глубины помещений к высоте верхней грани светового проема над условной рабочей поверхностью не превышает 8.

6. При выборе световых проемов и светопропускающих материалов следует учитывать:

требования к естественному освещению помещений;

назначение, объемно-пространственное и конструктивное решение здания;

ориентацию здания по сторонам горизонта;

климатические и светоклиматические особенности места строительства;

необходимость защиты помещений от инсоляции;

степень загрязнения воздуха.

7. При проектировании бокового естественного освещения следует учитывать затенение, создаваемое противостоящими зданиями.

8. Светопрозрачные заполнения светопроемов в жилых и общественных зданиях выбирают с учетом требований СНиП 23-02.

9. При боковом естественном освещении общественных зданий с повышенными требованиями к постоянству естественного освещения и солнцезащите (например, картинные галереи) световые проемы следует ориентировать на северную четверть горизонта (С-СЗ-С-СВ).

10. Выбор устройств для защиты от слепящего действия прямого солнечного света следует производить с учетом:

ориентации световых проемов по сторонам горизонта;

направления солнечных лучей относительно человека в помещении, имеющего фиксированную линию зрения (ученик за партой, чертежник за чертежной доской и т. п.);

рабочего времени суток и года в зависимости от назначения помещения;

разницы между солнечным временем, по которому построены солнечные карты, и декретным временем, принятым на территории Российской Федерации.

При выборе средств для защиты от слепящего действия прямого солнечного света следует руководствоваться требованиями строительных норм и правил по проектированию жилых и общественных зданий (СНиП 31-01, СНиП 2.08.02).

11. При односменном рабочем (учебном) процессе и при эксплуатации помещений в основном в первую половину дня (например, лекционные аудитории), когда помещения ориентированы на западную четверть горизонта, применение солнцезащитных средств необязательно.


Расчет естественного освещения

Целью расчета естественного освещения является определение площади световых проемов, то есть количества и геометрических размеров окон, обеспечивающих нормированное значение КЕО.

Выбор значений КЕО

1. В соответствии со СНиП 23-05 территория Российской Федерации зонирована на пять групп административных районов по ресурсам светового климата. Перечень административных районов, входящих в группы обеспеченности естественным светом, приведен в таблице 1.

2. Значения КЕО в жилых и общественных зданиях, расположенных в первой группе административных районов, принимают в соответствии со СНиП 23-05.

3. Значения КЕО в жилых и общественных зданиях, расположенных во второй, третьей, четвертой и пятой группах административных районов, определяют по формуле

e N = e н m N , (1)

где N - номер группы административных районов по таблице 1;

е н - нормированное значение КЕО по приложению И СНиП 23-05;

m N - коэффициент светового климата, принимаемый по таблице 2.

Полученные по формуле (1) значения следует округлять до десятых долей.

4. Размеры и расположение световых проемов в помещении, а также соблюдение требований норм естественного освещения помещений определяют предварительным и проверочным расчетами.


Предварительный расчет площади световых проемов и КЕО при боковом освещении

1. Предварительный расчет размеров световых проемов при боковом освещении без учета противостоящих зданий следует проводить с применением графиков, приведенных для помещений жилых зданий на рисунке 3, для помещений общественных зданий - на рисунке 4, для школьных классов - на рисунке 5. Расчет следует производить в следующей последовательности:

Рисунок 3 - График для определения относительной площади световых проемов А с.о /А п при боковом освещении жилых помещений

Рисунок 4 - График для определения относительной площади световых проемов А с.о /А п при боковом освещении помещений общественных зданий

Рисунок 5 - График для определения относительной площади световых проемов А с.о /А п при боковом освещении школьных классов

а) в зависимости от разряда зрительной работы или назначения помещения и группы административных районов по ресурсам светового климата Российской Федерации по СНиП 23-05 определяют нормированное значение КЕО для рассматриваемого помещения;

d п h 01 и отношение d п /h 01 ;

в) на оси абсцисс графика (рисунки 3, 4 или 5) определяют точку, соответствующую определенному значению d п /h 01 через найденную точку проводят вертикальную линию до пересечения с кривой, соответствующей нормированному значению КЕО. По ординате точки пересечения определяют значение А с.о /А п ;

г) разделив найденное значение А с.о /А п на 100 и умножив на площадь пола, находят площадь световых проемов в м 2 .

2. В случае когда размеры и расположение световых проемов в проекте зданий были выбраны по архитектурно-строительным соображениям, предварительный расчет значений КЕО в помещениях следует производить по рисункам 3-5 в следующей последовательности:

а) по строительным чертежам находят суммарную площадь световых проемов (в свету) А с.о и освещаемую площадь пола помещения А п и определяют отношение А с.о /А п ;

б) определяют глубину помещения d п , высоту верхней грани световых проемов над уровнем условной рабочей поверхности h 01 и отношение d п /h 01 ;

в) с учетом типа помещений выбирают соответствующий график (рисунки 3, 4 или 5);

г) по значениям А с.о /А п и d п /h 01 на графике находят точку с соответствующим значением КЕО.

Графики (рисунки 3-5) разработаны применительно к наиболее часто встречающимся в практике проектирования габаритным схемам помещений и типовому решению светопрозрачных конструкций - деревянным спаренным открывающимся переплетам.

Проверочный расчет КЕО при боковом освещении

1. Проверочный расчет КЕО Расчет КЕО следует производить в следующей последовательности:

а) график I (рисунок 6) накладывают на поперечный разрез помещения таким образом, чтобы его полюс (центр) 0 совместился с расчетной точкой А (рисунок 8), а нижняя линия графика - со следом рабочей поверхности;

б) по графику I подсчитывают число лучей, проходящих через поперечный разрез светового проема от неба n 1 и от противостоящего здания в расчетную точку А ;

в) отмечают номера полуокружностей на графике I, совпадающих с серединой С 1 участка светопроема, через который из расчетной точки видно небо, и с серединой С 2 участка светопроема, через который из расчетной точки видно противостоящее здание (рисунок 8);

г) график II (рисунок 7) накладывают на план помещения таким образом, чтобы его вертикальная ось и горизонталь, номер которой соответствует номеру концентрической полуокружности (пункт «в»), проходили через точку С 1 (рисунок 8);

д) подсчитывают число лучей п 2 по графику II, проходящих от неба через световой проем на плане помещения в расчетную точку А ;

е) определяют значение геометрического КЕО, учитывающего прямой свет от неба;

ж) график II накладывают на план помещения таким образом, чтобы его вертикальная ось и горизонталь, номер которой соответствует номеру концентрической полуокружности (пункт «в»), проходили через точку С 2 ;

з) подсчитывают число лучей по графику II, проходящих от противостоящего здания через световой проем на плане помещения в расчетную точку А ;

и) определяют значение геометрического коэффициента естественной освещенности, учитывающего свет, отраженный от противостоящего здания;

к) определяют значение угла , под которым видна середина участка неба из расчетной точки на поперечном разрезе помещения (рисунок 9);

л) по значению угла и заданным параметрам помещения и окружающей застройки определяют значения коэффициентов q i , b ф , k ЗД , r о , и K з , и вычисляют значение КЕО в расчетной точке помещения.

Рисунок 6- График I для расчета геометрического КЕО

Рисунок 7 - График II для расчета геометрического КЕО

Примечания

1 Графики I и II применимы только для световых проемов прямоугольной формы.

2 План и разрез помещения выполняют (вычерчивают) в одинаковом масштабе.

А - расчетная точка; 0 - полюс графика I; С 1 - середина участка светового проема, через который из расчетной точки видно небо; С 2 - середина участка светового проема, через который из расчетной точки видно противостоящее здание

Рисунок 8 - Пример использования графика I для подсчета числа лучей от неба и противостоящего здания


Предварительный расчет площади световых проемов и КЕО при верхнем освещении

1. Для предварительного расчета площади световых проемов при верхнем освещении следует применять следующие графики: для зенитных фонарей с глубиной проема (светопроводной шахты) до 0,7 м - по рисунку 9; для шахтных фонарей - по рисункам 10, 11; для фонарей прямоугольных, трапециевидных, шед с вертикальным остеклением и шед с наклонным остеклением - по рисунку 12.

Таблица 1

Тип заполнения Значения коэффициента K 1 для графиков на рисунках
1 2, 3
Один слой оконного стекла в стальных одинарных глухих переплетах - 1,26
То же, в открывающихся переплетах - 1,05
Один слой оконного стекла в деревянных одинарных открывающихся переплетах 1,13 1,05
Три слоя оконного стекла в раздельно-спаренных металлических открывающихся переплетах - 0,82
То же, в деревянных переплетах 0,63 0,59
Два слоя оконного стекла в стальных двойных открывающихся переплетах - 0,75
То же, в глухих переплетах - -
Стеклопакеты (два слоя остекления) в стальных одинарных открывающихся переплетах* - 1,00
То же, в глухих переплетах* - 1,15
Стеклопакеты (три слоя остекления) в стальных глухих спаренных переплетах* - 1,00
Пустотелые стеклянные блоки - 0,70
* При применении других видов переплетов (ПВХ, деревянные и др.) коэффициент K 1 принимают по таблице 3 до проведения соответствующих испытаний.

Площадь световых проемов фонарей А с.ф определяют по графикам на рисунках 9-12 в следующей последовательности:

а) в зависимости от разряда зрительной работы или назначения помещения и группы административных районов по ресурсам светового климата Российской Федерации по СНиП 23-05;

б) на ординате графика определяют точку, соответствующую нормированному значению КЕО, через найденную точку проводят горизонталь до пересечения с соответствующей кривой графика (рисунки 9-12), по абсциссе точки пересечения определяют значение А с.ф /А п ;

в) разделив значение А с.ф /А п на 100 и умножив на площадь пола, находят площадь световых проемов фонарей в м 2 .

Предварительный расчет значений КЕО в помещениях следует производить с применением графиков на рисунках 9-12 в следующей последовательности:

а) по строительным чертежам находят суммарную площадь световых проемов фонарей А с.ф , освещаемую площадь пола помещения А п и определяют отношение А с.ф /А п ;

б) с учетом типа фонаря выбирают соответствующий рисунок (8, 10, 11или 12);

в) на выбранном рисунке через точку с абсциссой А с.ф /А п проводят вертикальную линию до пересечения с соответствующим графиком; ордината точки пересечения будет равна расчетному среднему значению коэффициента естественной освещенности е ср .

Рисунок 9 - График для определения среднего значения КЕО е ср в помещениях с зенитными фонарями с глубиной проема до 0,7 м и размерами в плане, м:

1 - 2,9x5,9; 2 3 - 1,5x1,7

Рисунок 10 - График для определения среднего значения КЕО е ср в общественных помещениях с шахтными фонарями с глубиной светопроводной шахты 3,50 м и размерами в плане, м:

1 - 2,9x5,9; 2 - 2,7x2,7; 2,9x2,9; 1,5x5,9; 3 - 1,5x1,7

Рисунок 11 - График для определения среднего значения КЕО е ср в общественных помещениях с шахтными фонарями диффузного света с глубиной светопроводной шахты 3,50 м и размерами в плане, м:

1 - 2,9x5,9; 2 - 2,7х 2,7; 2,9x2,9; 1,5x5,9; 3 - 1,5x1,7

1 - трапециевидный фонарь; 2 - шед, имеющий наклонное остекление;

3 - прямоугольный фонарь; 4 - шед, имеющий вертикальное остекление

Рисунок 12- График для определения среднего значения КЕО е cp в общественных помещениях с фонарями

Проверочный расчет КЕО при верхнем освещении

Расчет КЕО производят в следующей последовательности:

а) график I (рисунок 6) накладывают на поперечный разрез помещения таким образом, чтобы полюс (центр) 0 графика совмещался с расчетной точкой, а нижняя линия графика - со следом рабочей поверхности. Подсчитывают число радиально направленных лучей графика I, проходящих через поперечный разрез первого проема (n 1) 1 , второго проема - (n 1) 2 , третьего проема - (n 1) 3 и т. д.; при этом отмечают номера полуокружностей, которые проходят через середину первого, второго, третьего проемов и т. д.;

б) определяют углы , , и т. д. между нижней линией графика I и линией, соединяющей полюс (центр) графика I с серединой первого, второго, третьего проемов и т. д.;

в) график II (рисунок 7) накладывают на продольный разрез помещения; при этом график располагают так, чтобы его вертикальная ось и горизонталь, номер которой должен соответствовать номеру полуокружности на графике I, проходили через середину проема (точка C ).

Подсчитывают число лучей по графику II, проходящих через продольный разрез первого проема (n 2) 1 , второго проема - (п 2) 2 , третьего проема - (n 2) 3 и т. д.;

г) вычисляют значение геометрического КЕО , в первой точке характерного разреза помещения по формуле

где Р - число световых проемов;

q - коэффициент, учитывающий неравномерную яркость участка небосвода, видимого из первой точки соответственно под углами ,, и т. д.;

д) повторяют вычисления в соответствии с пунктами «а», «б», «в», «г» для всех точек характерного разреза помещения до N включительно (где N - число точек, в которых производят расчет КЕО);

е) определяют среднее значение геометрического КЕО;

ж) по заданным параметрам помещения и световых проемов определяют значения r 2 , k ф , ;

Проверочный расчет значений КЕО в точках характерного разреза помещения при верхнем освещении от зенитных и шахтных фонарей следует выполнять по формуле:

где A ф.в - площадь входного верхнего отверстия фонаря;

N ф - число фонарей;

q () - коэффициент, учитывающий неравномерную яркость облачного неба МКО;

Угол между прямой, соединяющей расчетную точку с центром нижнего отверстия фонаря, и нормалью к этому отверстию;

Среднее значение геометрического КЕО;

K с - коэффициент светопередачи фонаря, определяемый для фонарей с диффузным отражением стенок, а для фонарей с направленным отражением стенок -по значению индекса светового проема шахтного фонаря i ф ;

Рисунок 13 - График для определения коэффициента q () в зависимости от угла

Рисунок 14 K с фонарей с диффузным отражением стенок шахты

Рисунок 15 - График для определения коэффициента светопередачи K c фонарей с направленным отражением стенок шахты при различных значениях коэффициента диффузного отражения стенок шахты

K з - расчетный коэффициент, учитывающий снижение КЕО и освещенности в процессе эксплуатации вследствие загрязнения и старения светопрозрачных заполнений в световых проемах, а также снижение отражающих свойств поверхностей помещения (коэффициент запаса).

Индекс светового проема фонаря с отверстиями в форме прямоугольника i ф определяют по формуле

где A ф.н - площадь нижнего отверстия фонаря, м 2 ;

A ф.в - площадь верхнего отверстия фонаря, м 2 ;

h с.ф - высота светопроводной шахты фонаря, м.

Р ф.в , Р ф.н - периметр верхнего и нижнего отверстий фонаря соответственно, м.

То же, с отверстиями в форме круга - по формуле

i ф = (r ф.в + r ф.н ) / 2h с.ф , (5)

где r ф.в , r ф.н - радиус верхнего и нижнего отверстий фонаря соответственно.

Вычисляют значение геометрического КЕО в первой точке характерного разреза помещения по формуле

Повторяют вычисления для всех точек характерного разреза помещения до N j включительно (где N j - число точек, в которых производят расчет КЕО).

Определяют по формуле

Последовательно для всех точек вычисляют прямую составляющую КЕО по формуле

Определяют отраженную составляющую КЕО , значение которой одинаково для всех точек, по формуле

. (9)

Расчет естественного освещения рабочего кабинета

Теоретическая часть

Освещение рабочих кабинетов, офисов должно проектироваться на основе следующих требований:

а) создание необходимых условий освещения на рабочих столах, расположенных в глубине помещения при выполнении разнообразных зрительных работ (чтение типографского и машинописного текстов, рукописных материалов, различение деталей графических материалов и т. п.);

б) обеспечение зрительной связи с наружным пространством;

в) защита помещений от слепящего и теплового действия инсоляции;

г) благоприятное распределение яркости в поле зрения.

Боковое освещение рабочих кабинетов должно осуществляться, как правило, отдельными световыми проемами (одно окно на каждый кабинет). С целью снижения необходимой площади световых проемов высоту подоконника над уровнем пола рекомендуется принимать не менее 0,9 м.

При расположении здания в административных районах Российской Федерации групп по ресурсам светового климата нормированное значение КЕО следует принимать: при глубине рабочих кабинетов (офисов) 5 м и более - по таблице 3 применительно к совмещенной системе освещения; менее 5 м - по таблице 4 применительно к естественной системе освещения.

Для обеспечения зрительного контакта с наружным пространством заполнение световых проемов должно, как правило, выполняться светопрозрачным оконным стеклом.

Для ограничения слепящего действия солнечной радиации в рабочих кабинетах и офисах необходимо предусматривать шторы и легкие регулируемые жалюзи. При проектировании зданий управления и зданий под офисы для III и IV климатических районов Российской Федерации следует предусматривать оборудование световых проемов, ориентированных на сектор горизонта в пределах 200°-290° солнцезащитными устройствами.

В помещениях значения коэффициента отражения поверхностей должны быть не менее:

потолка и верхней части стен.. 0,70

нижней части стен.................... 0,50

пола.......................................... 0,30.


Практическая часть

Требуется определить необходимую площадь окна в рабочих кабинетах здания управления, располагаемого в городе Сургуте (лист 1).

Исходные данные. Глубина помещения d п = 5,5 м, высота h = 3,0 м, ширина b п = 3,0 м, площадь пола А п = 16,5 м 2 , высота верхней грани светового проема над условной рабочей поверхностью h 01 = 1,9 Заполнение световых проемов прозрачным остекленением по металлическим одинарным переплетам; толщина наружных стен 0,35 м. Затенение противостоящими зданиями отсутствует.

Решение

1. Учитывая, что глубина помещения d п свыше 5 м, по таблице 3 находим, что нормированное значение КЕО равно 0,5 %.

2. Производим предварительный расчет естественного освещения по исходной глубине помещения d п = 5,5 м и высоте верхней грани светового проема над условной рабочей поверхностью h 01 = 1,9 м; определяют, что d п /h 01 = 5,5/1,9=2,9.

3. На рисунке 4 на соответствующей кривой е = 0,5 % находим точку с абсциссой d п /h 01 = 2,9. По ординате этой точки определяем, что необходимая относительная площадь светового проема A о / A п = 16,6%.

4. Определяем площадь светового проема А о по формуле:

0,166 А п = 0,166 · 16,5 = 2,7 м 2 .

Следовательно, ширина светового проема b o = 2,7/1,8 = 1,5 м.

Принимаем оконный блок размером 1,5 х 1,8 м.

5. Производим проверочный расчет КЕО в точке А (лист 1) по формуле:

.

6. Накладываем график I для расчета КЕО методом А.М. Данилюка на поперечный разрез помещения (лист 2), совмещая полюс графика I - 0 с точкой А , а нижнюю линию - с условной рабочей поверхностью; подсчитываем число лучей по графику I, проходящих через поперечный разрез светового проема: n 1 = 2.

7. Отмечаем, что через точку С на разрезе помещения (лист 2) проходит концентрическая полуокружность 26 графика I.

8. Накладываем график II для расчета КЕО на план помещения (лист 1) таким образом, чтобы его вертикальная ось и горизонталь 26 проходили через точку С ; подсчитываем по графику II число лучей, проходящих от неба через световой проем: п 2 = 16.

9. Определяем значение геометрического КЕО по формуле:

10. На поперечном разрезе помещения в масштабе 1:50 (лист 2) определяем, что середина участка неба, видимого из расчетной точки А через световой проем, находится под углом ; по значению этого угла по таблице 5 находим коэффициент, учитывающий неравномерную яркость облачного неба МКО: q i =0,64.

11. По размерам помещения и светового проема находят, что d п /h 01 = 2,9;

l Т /d п = 0,82; b п /d п = 0,55.

12. Средневзвешенный коэффициент отражения .

13. По найденным значениям d п /h 01 ; l T /d п ; b п /d п по таблице 6 находим, что r o = 4,25.

14. Для прозрачного остекленения с металлическим одинарным переплетом находим общий коэффициент пропускания света .

15 По СНиП 23-05 находим, что коэффициент запаса для окон общественных зданий K з = 1,2.

16 Определяем геометрический КЕО в точке А, подставляя значения всех найденных коэффициентов в формулу:

.

Следовательно, выбранные размеры светового проема обеспечивают требования норм по совмещенному освещению рабочего кабинета.

Таблица 1

Группы административных районов

Административный район
1 Московская, Смоленская, Владимирская, Калужская, Тульская, Рязанская, Нижегородская, Свердловская, Пермская, Челябинская, Курганская, Новосибирская, Кемеровская области, Республика Мордовия, Чувашская Республика, Удмуртская Республика, Республика Башкортостан, Республика Татарстан, Красноярский край (севернее 63° с.ш.). Республика Саха (Якутия) (севернее 63° с.ш.), Чукотский автон. округ, Хабаровский край (севернее 55° с.ш.)
2 Брянская, Курская, Орловская, Белгородская, Воронежская, Липецкая, Тамбовская, Пензенская, Самарская, Ульяновская, Оренбургская, Саратовская, Волгоградская области, Республика Коми, Кабардино-Балкарская Республика, Республика Северная Осетия-Алания, Чеченская Республика, Республика Ингушетия, Ханты-Мансийский автономный округ, Республика Алтай, Красноярский край (южнее 63° с.ш.), Республика Саха (Якутия) (южнее 63° с.ш.), Республика Тыва, Республика Бурятия, Читинская область, Хабаровский край (южнее 55° с.ш.), Магаданская, Сахалинская области
3 Калининградская, Псковская, Новгородская, Тверская, Ярославская, Ивановская, Ленинградская, Вологодская, Костромская, Кировская области, Республика Карелия, Ямало-Ненецкий автономный округ, Ненецкий автономный округ
4 Архангельская, Мурманская области
5 Республика Калмыкия, Ростовская, Астраханская области, Ставропольский край, Краснодарский край, Республика Дагестан, Амурская область, Приморский край

Таблица 2

Коэффициент светового климата

Световые проемы Ориентация световых проемов по сторонам горизонта Коэффициент светового климата m N
Номер группы административных районов
1 2 3 4 5
В наружных стенах здании С 1 0,9 1,1 1,2 0,8
СВ, СЗ 1 0,9 1,1 1,2 0,8
З, В 1 0,9 1,1 1,1 0,8
ЮВ, ЮЗ 1 0,85 1 1,1 0,8
Ю 1 0,85 1 1,1 0,75
В зенитных фонарях - 1 0,9 1,2 1,2 0,75
Примечание - С - северная; СВ - северо-восточная; СЗ - северо-западная; В - восточная; З - западная; Ю - южная; ЮВ - юго-восточная; ЮЗ - юго-западная ориентация.

Таблица 3

Нормированные значения КЕО при боковом совмещенном освещении в основных помещениях жилых и общественных зданий в административных районах различных групп по ресурсам светового климата

Группы административных районов по ресурсам светового климата КЕО, %
в школьных классах в выставочных залах в читальных залах в проектных залах
1 0,60 1,30 0,40 0,70
0,60 1,30 0,40 0,70
159-203 0,60 1,30 0,40 0,70
294-68 0,60 - 0,40 0,70
2 0,50 1,20 0,40 0,60
0,50 1,10 0,40 0,60
159-203 0,50 1,10 0,40 0,60
294-68 0,50 - 0,40 0,60
3 0,70 1,40 0,50 0,80
0,60 1,30 0,40 0,70
159-203 0,60 1,30 0,40 0,70
294-68 0,70 - 0,50 0,90
4 0,70 1,40 0,50 0,80
0,70 1,40 0,50 0,80
159-203 0,70 1,40 0,50 0,80
294-68 0,70 - 0,50 0,80
5 0,50 1,00 0,30 0,60
0,50 1,00 0,30 0,60
159-203 0,50 1,00 0,30 0,50
294-68 0,50 - 0,30 0,60

Таблица 4

Нормированные значения КЕО при боковом естественном освещении в основных помещениях жилых и общественных зданий в различных группах административных районов по ресурсам светового климата

Группы админист-

ративных районов по ресурсам светового климата

Ориентация световых проемов по сторонам горизонта, град. Нормированные значения КЕО, %
в рабочих кабинетах зданий управления, офисах в школьных классах в жилых помещениях

вочных залах

в читальных залах

в проектных залах, чертежно-

конструк-

торских бюро

1 1,00 1,50 0,50 0,70 1,20 1,50
1,00 1,50 0,50 0,70 1,20 1,50
159-203 1,00 1,50 0,50 0,70 1,20 1,50
294-68 1,00 - 0,50 0,70 1,20 1,50
2 0,90 1,40 0,50 0,60 1,10 1,40
0,90 1,30 0,40 0,60 1,10 1,30
159-203 0,90 1,30 0,40 0,60 1,10 1,30
294-68 0,90 - 0,50 0,60 1,10 1,40
3 1,10 1,70 0,60 0,80 1,30 1,70
1,00 1,50 0,50 0,70 1,20 1,50
159-203 1,00 1,50 0,50 0,70 1,20 1,50
294-68 1,10 - 0,60 0,80 1,30 1,70
4 1,10 1,70 0,60 0,80 1,30 1,70
1,10 1,70 0,60 0,80 1,30 1,70
159-203 1,10 1,70 0,60 0,80 1,30 1,70
294-68 1,20 - 0,60 0,80 1,40 1,80
5 0,80 1,20 0,40 0,60 1,00 1,20
0,80 1,20 0,40 0,60 1,00 1,20
159-203 0,80 1,10 0,40 0,50 0,90 1,10
294-68 0,80 - 0,40 0,60 0,90 1,20

Таблица 5

Значения коэффициента q i

Угловая высота среднего луча участка небосвода, видимого из расчетной точки через световой проем в разрезе помещения, град. Значения коэффициента q i
2 0,46
6 0,52
10 0,58
14 0,64
18 0,69
22 0,75
26 0,80
30 0,86
34 0,91
38 0,96
42 1,00
46 1,04
50 1,08
54 1,12
58 1,16
62 1,18
66 1,21
70 1,23
74 1,25
78 1,27
82 1,28
86 1,28
90 1,29

Примечания

1 При значениях угловых высот среднего луча, отличных от приведенных в таблице, значения коэффициента q i определяют интерполяцией.

2 В практических расчетах угловую высоту среднего луча участка небосвода, видимого из расчетной точки через световой проем в разрезе помещения, следует заменять угловой высотой середины участка небосвода, видимого из расчетной точки через световой проем.

Таблица 6

Значения r o для условной рабочей поверхности

Отношение глубины помещения d п к высоте от уровня условной рабочей поверхности до верха окна h 01 Отношение расстояния расчетной точки от внутренней поверхности наружной стены l T к глубине помещения d п Средневзвешенный коэффициент отражения пола, стен и потолка
0,60 0,50 0,45 0,35
Отношение длины помещения а п к его глубине d п
0,5 1,0 2,0 0,5 1,0 2,0 0,5 1,0 2,0 0,5 1,0 2,0
1,00 0,10 1,03 1,03 1,02 1,02 1,02 1,02 1,02 1,02 1,01 1,01 1,01 1,01
1,00 0,50 1,66 1,59 1,46 1,47 1,42 1,33 1,37 1,34 1,26 1,19 1,17 1,13
1,00 0,90 2,86 2,67 2,30 2,33 2,19 1,93 2,06 1,95 1,74 1,53 1,48 1,37
3,00 0,10 1,10 1,09 1,07 1,07 1,06 1,05 1,06 1,05 1,04 1,03 1,03 1,02
3,00 0,20 1,32 1,29 1,22 1,23 1,20 1,16 1,18 1,16 1,13 1,09 1,08 1,06
3,00 0,30 1,72 1,64 1,50 1,51 1,46 1,36 1,41 1,37 1,29 1,20 1,18 1,14
3,00 0,40 2,28 2,15 1,90 1,91 1,82 1,64 1,73 1,66 1,51 1,37 1,33 1,26
3,00 0,50 2,97 2,77 2,38 2,40 2,26 1,98 2,12 2,01 1,79 1,56 1,51 1,39
3,00 0,60 3,75 3,47 2,92 2,96 2,76 2,37 2,57 2,41 2,10 1,78 1,71 1,55
3,00 0,70 4,61 4,25 3,52 3,58 3,32 2,80 3,06 2,86 2,44 2,03 1,93 1,72
3,00 0,80 5,55 5,09 4,18 4,25 3,92 3,27 3,60 3,34 2,82 2,30 2,17 1,91
3,00 0,90 6,57 6,01 4,90 4,98 4,58 3,78 4,18 3,86 3,23 2,59 2,43 2,11
5,00 0,10 1,16 1,15 1,11 1,12 1,11 1,08 1,09 1,08 1,07 1,05 1,04 1,03
5,00 0,20 1,53 1,48 1,37 1,38 1,34 1,27 1,30 1,27 1,21 1,15 1,14 1,11
5,00 0,30 2,19 2,07 1,84 1,85 1,77 1,60 1,68 1,61 1,48 1,34 1,31 1,24
5,00 0,40 3,13 2,92 2,49 2,52 2,37 2,07 2,22 2,10 1,85 1,61 1,55 1,43
5,00 0,50 4,28 3,95 3,29 3,34 3,11 2,64 2,87 2,68 2,31 1,94 1,84 1,66
5,00 0,60 5,58 5,12 4,20 4,27 3,94 3,29 3,61 3,35 2,83 2,31 2,18 1,92
5,00 0,70 7,01 6,41 5,21 5,29 4,86 4,01 4,44 4,09 3,40 2,72 2,55 2,20
5,00 0,80 8,58 7,82 6,31 6,41 5,87 4,79 5,33 4,90 4,03 3,17 2,95 2,52
5,00 0,90 10,28 9,35 7,49 7,63 6,96 5,64 6,30 5,77 4,71 3,65 3,39 2,86

Если отделка поверхности помещения неизвестна, то для помещений жилых и общественных зданий средневзвешенный коэффициент отражения следует принимать равным 0,50.

Таблица 7

Значения коэффициентов 1 и

Вид светопропускающего материала

Значения

Вид переплета

Значения

Стекло оконное листовое: Переплеты для окон и фонарей промышленных зданий:
одинарное 0,9
двойное 0,8 деревянные:
тройное 0,75 одинарные 0,75
Стекло витринное толщиной 6-8 мм 0,8 спаренные 0,7
Стекло листовое армированное 0,6 двойные раздельные 0,6
Стекло листовое узорчатое 0,65 стальные:
Стекло листовое со специальными свойствами: одинарные открывающиеся 0,75
одинарные глухие 0,9
солнцезащитное 0,65 двойные открывающиеся 0,6
контрастное 0,75 двойные глухие 0,8
Органическое стекло: Переплеты для окон жилых, общественных и вспомогательных зданий:
прозрачное 0,9
молочное 0,6
Пустотелые стеклянные блоки: деревянные:
светорассеивающие 0,5 одинарные 0,8
светопрозрачные 0,55 спаренные 0,75
Стеклопакеты 0,8 двойные раздельные 0,65
с тройным остеклением 0,5
металлические:
одинарные 0,9
спаренные 0,85
двойные раздельные 0,8
с тройным остеклением 0,7
Стекложелезобетонные панели с пустотелыми стеклянными блоками при толщине шва:
20 мм и менее 0,9
более 20 мм 0,85

Таблица 8

Значения коэффициентов и

Несущие конструкции покрытий Коэффициент, учитывающий потери света в несущих конструкциях, Солнцезащитные устройства, изделия и материалы Коэффициент, учитывающий потери света в солнцезащитных устройствах,
Стальные фермы 0,9 Убирающиеся регулируемые жалюзи и шторы (межстекольные, внутренние, наружные) 1,0
Железобетонные и деревянные фермы и арки 0,8 Стационарные жалюзи и экраны с защитным углом не более 45° при расположении пластин жалюзи или экранов под углом 90° к плоскости окна:
горизонтальные 0,65
вертикальные 0,75
Балки и рамы сплошные при высоте сечения: Горизонтальные козырьки:
с защитным углом не более 30° 0,8
50 см и более 0,8 с защитным углом от 15° до 45° 0,9-0,6
менее 50 см 0,9 (многоступенчатые)
Балконы глубиной:
до 1,20 м 0,90
1,50 м 0,85
2,00 м 0,78
3,00 м 0,62
Лоджии глубиной:
до 1,20 м 0,80
1,50 м 0,70
2,00 м 0,55
3,00 м 0,22

Заключение

В ходе курсовой работы мною был изучен такой параметр, как естественное освещение. Был рассмотрен принцип нормирования естественного освещения, а также проектирование естественного освещения. В данной работе я сделала расчет естественного освещения в рабочем кабинете. Нормированное значение коэффициента естественного освещения 0,5% для выбранного округа. Проделав предварительный расчет, я выяснила размеры оконного блока для достаточной освещенности: 1,5*1,8. В проверочном расчете, я утвердилась в правильности выбраннызх размеров светового проема, так как они обеспечивают требования норм по совмещенному освещению рабочего кабинета. Коэффициент естественного освещения в проверочном расчете 0,53%.

Жилая комната оказывает значительное влияние на качество звучания ГГ и АС. При этом не безразлично, в каком месте комнаты они расположены. Так, при установке АС в углу помещения происходит подъем низких частот, что не всегда желательно, особенно в случае недостаточного демпфирования НЧ ГГ. В то же время для малогабаритных АС подъем низких частот обогащает звучание. Лучше располагать АС вдоль большей стены помещения, вдали от углов. Рекомендации по размещению АС не всегда выполнимы в жилой комнате, поскольку могут не согласовываться с расположением мебели, и поэтому в каждом конкретном случае следует попробовать различные варианты, оценивая качество звучания на слух по своему вкусу. Акустические условия в помещении оказывают сильное воздействие на качество звучания. В предельном случае, когда в жилой комнате отсутствует мебель, т. е. комната пуста, звучание любой АС становится совершенно неудовлетворительным. Форма помещения имеет важное значение. Наименее удачная – кубическая. В помещении любой конфигурации точно так же, как и внутри акустического оформления АС, на низких частотах возникают стоячие волны. В помещениях кубической формы интенсивность стоячих волн максимальна, поскольку они образуются на совпадающих частотах вследствие равенства расстояния между противоположными стенами. Эффективных методов борьбы со стоячими волнами в жилых помещениях не существует, а поэтому лучше избегать размещения АС в помещениях, имеющих форму куба.

Жилые помещения не бывают пустыми, в них всегда имеются мягкая мебель, книги, ковры, т. е. помещения имеют значительный фонд для звукопоглощения средних и высоких частот, что обеспечивает вполне приемлемые условия для прослушивания. Можно получить некоторое увеличение звукопоглощающего фонда путем закрепления имеющегося ковра не вплотную к стене, как обычно, а на некотором от нее расстоянии, хотя бы в пределах 30…50 мм. Если в помещении имеются книги, находящие-ся в шкафах или на застекленных книжных полках, то на время прослушивания полезно открывать дверцы шкафов и раздвигать стекла полок. АС должны быть установлены таким образом, чтобы высокочастотные ГГ располагались на уровне глаз сидящего слушателя (на высоте 1,25 м от пола). Для стереофонического звуковоспроизведения необходимо также обеспечить условия наилучшего восприятия стереофонического эффекта в удобном для слушателей месте помещения. С этой целью АС надо устанавливать на расстоянии 1,5…2,5 м друг от друга таким образом, чтобы их рабочие оси пересекались в центре зоны прослушивания, которая будет находиться посередине между АС на одинаковом расстоянии от каждой из них, равном расстоянию между ними, и дальше. Следует отметить важность правильной взаимной фазировки АС при подключении их к усилителю звуковых частот. В домашних условиях фазировку подключения АС можно проверить установкой их рядом друг с другом и подачей в электрический тракт монофонической музыкальной программы, содержащей явно выраженные низкочастотные составляющие. Если при изменении полярности подключения любой одной АС громкость звучания низких частот резко уменьшится, то, значит, АС были включены синфазно и необходимо восстановить первоначальную полярность включения. Если же, наоборот, громкость звучания низких частот возрастает, то следует оставить эту полярность подключения как правильную.